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PREFACE

THE purpose of this book is to give the theory of Mathieu functions
and to demonstrate its application to tepresentative problems in
physics and engineering science. Tt has been written for the techno-
logist, and ¢s not addressed in any sense to the pure mathematician, for
whom I am net qualified to write. Between the outlock of the two
. Pparties lies a gulf as wide as that between sinner and sain or vice
versa! Although, by virtue of necessity, the technologist may depa®
sionally deviate from the narrow path followed rigorously Jgyythe
pure mathematician, it must not be forgotten that the congegnences
of such deviation may be practical results of considera-blei;l;éneﬁt to
the community at large. Since the pure mathematigiah profits by
these technological advances, any eriticisns of mebhb{is used by the
technologist should be entirely of a constructive gnd helpful nature.
The text is in two parts, (1) Theory, (2) AJ)}ﬁTc}a.tions; but there is
no need to peruse the whole of (1) before reading (2). For instance
a study of the second half of Chapter IV, 'will enable the reader to
cope with most of the applications im€&hapter XV, Some theory is
asgociated with computation of ,péfra'meters, a-ad of coefficients in
series. Other parts of it, not applied directly, are included in the
hope that future needs will Be\met. ‘The reader is expected to have
an elementary knowledge(of (¢) Bessel functions, because they play
an important role inQ(}h}pters VIII, X, XT, XIII, XVII-XVIII;
(b) convergence of infiite series and integrals, and the consequences
of uniform convergbnce, e.g. continuity of a function, term-by-term
diﬁerentiatiop;aha integration of series. If thesc subjects are un-
known, the@etiuisite knowledge should be acquired {202, 214, 215,
218). .\
The ohapter sequence is such as to reduce forward references to
a ‘mipimum; unfortunately they are unavoidable. The original
memoirs from which information was taken are indicated in | 1,
which denotes the number in the reference list on pp. 373-81. The
analysis herein iz seldom the same as that in the original memoir.
In writing the manuscript I realized that there were wide gaps which,
if left unfilled, would have rendered the text discontinuous. The
filling of these gaps has.enta;i}ed considerable labour; in fact more
than onie-third of the text is new. The main part of it is in ‘Additional



vi PREFTACE

Results’, and in Chapters IV, V, VII-XI, XIII, X1V, XVII, Appen-
dixes I, III. The new method of computing the coefficients in the
periodic part of the series representation of fe,, ge,. ¥e,, Ge, in
Chapter VII is a joint contribution with W. (i. Bickley.

Symbolism. The variety of notations encountered in the literature
on the subject, the introduction of new forms of solution, new
multipliers, etc., necessitated a careful survey of and a decision on
notation, The first item for consideration was the form to be taken
by Mathieu’s equation. The canonieal form chosen is

d2y

&? . A
More than two years after this decisjon had been mq@e‘,‘\H. Jeffreys
pointed out that the form used by Mathieu in his‘original memoir
[180] wag LY
@E—, R—2h%cos 24) P :'0} (2)
o + * 8N

4D

Thus after encircling the point at issuafor about three-quarters of

a century and encountering many branthes, we have at last returned

(quite unwittingly} to the initial on si:arting value! The coincidence

seems significant. If we take J f‘-:'—fng*, the arguments in the Bessel

series solutions of (1), and if&‘thres other forms, have no fractional
factors. Symbols used for various classes of solution have been
selected to avoid cnr;ﬁﬁs\mn with other mathematical functions. The
hasis of the n()t-atio}tﬁs"‘e’ for elliptic eylinder function, introduced hy

E.T. Whittaker §ome thirty-five years ago. He used ce, se, to signify

‘cosine-elliptieX“sine-elliptic’, and associated Mathieu’s name with

these periédic’ functions. Herein the generic designation ‘Mathieun

tunctign®applies to all solutions of (1) in its four torms, which have
the ‘a?pmpria,te multipliers and/or normalization, The functions are
mclagsiﬁe(i, for g real, in Appendix III. For second (non-periodie)
\ao’lutions of (1} which correspond to o8,(2,9), 8e,,(2,¢), the letters f, g

are used., Thus the respective second solutions are written fe,.(=, g,

geniz, ¢). When iz is substituted for 2 in ce,(z,9), ete., we follow

H. Jeffreys [164] and use capital letters, Agcordingly wp have

Ce,,(2,9), 8e,(z, 9), Fe,(2,9), Ge,(z,¢). There are also second solutions
involving the ¥- and K -Bessel functions,
the two latter. They are desi
Gek,(z, ¢). ey, (z,

QY

+ (a—2g cos 2z)y = O» (1)

N
AN

which take precedence over

. gna.ted Fer(Z, 9)7 Geym(z: 9)7 Fekm(z’ q)’
q) is a particular linear combination of the even
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first solution ce,(z,¢), and the corresponding odd solution fe,_(z, )
of (1), in which z is replaced by iz. For wave propagation problems,
combination solutions akin to the Hankel funetions have been intro-
duced. They have been allocated the symbols Me, Ne, M being for
Mathieu and N the next letter of the alphabet. Owing to the war, it
was not till the summer of 1946 that, as a result of correspondence
with Gi. Blanch, T became aware that in references [23, 21 1] Stratton,
Morse, Chu, and Hutner had defined functions represented by series
of Y-Bessel functions (similar to some in Chapter VIII) and also
combination functions akin to Me, Ne, \

The Mathieu functions of positive integral order are solutiérs of
(1) in its four forms when the parametric peint (2,¢) lies #pon one
of the characteristic curves a,, b, of Iigs. 8 and 1L Thé functions
of fractional order, namely, ce,,.5(2,9), se,.4(2,9), 0, g ﬁ' < 1, have
been introduced to provide standard solutions whefi {a g) lies within
a stable region of Figs. 8, 11. If 8 = p/s, a rational fraction, always
presumed to be in its lowest terms, the functiph®dre periodic in z real,
with period 2s7, 8 = 2. The funetions ceqm;ﬂ\(j:z, g) have been intro-
daced to provide standard solutions when {&,q) lies 4» an unstable
region of Figs. 8, 11. u is real and pesitive, and ‘u’ signifies that the
solution pertains to an unstable reéfon. If ¢ is negative imaginary,
ce,,(z, ¢) is a complex function of #, 50 in Chapter 11, cer,, z and cei,, 2,
have been used to denote it§ xéal and ima,ginar} parts, respectively.
Symbols in heavy typ ignlfy per unit area’, or ‘per unit length’;
i, n, P, & US ‘fwlly represent positive integers including zero, except
in §§ 3.40-3.5 where ¥ Is real and positive; r represents any integer;
o~ means a,ppru{umateh equal to’; ~ signifies ‘asymptotically equal
to’, ‘approachés asymptotically to’, or ‘asymptotic form’; Riz},
Im(z) or Ihag(z), indicate the real and imaginary parts of z, resapec—
tively; su_perscmpts in AZ4Y, BEnA® signify the order of the funetion,
white the subscripts denote that of the coefficient itself; the sub-
scripts in a,, b, @,,.g indicate the order of the function of which
@, etc., is the characteristic number. Wherever possible a standard
summation from 0 to 490 is used. Other symbols employved are
those gencrally found in advanced mathematical texts in English.
References to Fig. 8 are to either 84 or 8B, whichever is the maore
convenient.

Tables. The values of the characteristic numbers a,,..., #5; by,..., by,
computed by Ince, and abbreviated hy him to 7 decimal places [95],
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are given in Appendix I1 for the range ¢ = 0 to 40. F org j_m.?;ginar ¥
some &, computed by Goldstein and Mulholland are given in Table 4,
p. 51[57]. No othertabular values are reproduced, since they are much
too extensive for inclusion here. An interpolable table of Byoves s}
byseens bys, for the range g == 0-25, eompiled by the National Bureau
of Standards Mathematical Tables Project, became available after
completion of the manuseript. By its aid, the stability chart of
Fig. 84 may be extended considerably for @ positive. To obtain a
more uniform vertical spacing (z-axis), at should be plotted instead
of a. There are no tabular values of Ce,, Se,, Fey,, Gey,, Fek,,
Gek,,, and this restricts the use of Mathieu functions in a-pp}ig@tions.
Functions of integral order suitable for tabulation are-listed in
-reference 8. To the list may be added an interpolable j;%ﬁ[e of @, ad,
¢, B, p- This would enable a large iso-Su chart akigyte Fig. 11 (but
much extended) to be plotted using differont co]pu;r«é'd inks, thereby
rendering visual interpolation possible. If, asNhéntioned above, at
is plotted instead of @, the interpolation is sypp}dximately linear when
l¢| i3 not too large. A chart of this typewould be of inestimable
value for solving Mathien equations. ()" .
Acknowledgements. Prof. W, G.,;Bii;kley and Mr. T. Lewis under-
took the arduous task of readjng'mtich of the manuscript. To them
I express my sincere thanks fop ‘help and advice which has been in-
valuable. I am indebted40s Prof, Bickley for additional terms in
(2), (4), (6)§ 2.151. My, t}l}nks are also due to Prof. 7. A. A. Broad-
bent and Dr. J. G By Miller for criticizing certain sections of the
manuseript. I takethis opportunity of thanking Dr. (iertrude Blanch
for pointing oub.the relations in § 4 of the additional results. She
obtained (L)8)5 3, and (1), (2)§ 8 independently. The whole of the
proofs ha‘Q(e' been read and the analysis checked by Messrs, T. V.
Davieg ‘and A. L. Meyers. To them I tender my best thanks for the
ngt,i’dgjlous care which they have exercised, and for their valuable
Suggestions. I am much indebted to Dr. L. J. Comrie for the loan
of books and reprints of papers; also to him and Miss Dorothy
Reynolds for checking some of the caleulations in Chapter VI, and
for computing the numerical data, using analysis in Chapter V, from
which the important iso-8u chart of Figure 11 was plotted. Sir
Edmund T. Whittaker kindly loaned me a, large number of reprints
of papers by various authors, while Mrs. P. Tnce kindly gave me copies
of the late Prof. E. L. Ince’s published works. Prof. A. L, Dixon,
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Miss Ethel M. Harris were good enough to loan me books and
memoirs, which I would not have seon otherwise.
It is with pleasure that I acknowledge permission to reproduce the
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. Barrow, 21, 1182 (1933). ' O\
4. Tigs. 41 4, B; Institute of Radio Engineers (America); paper by
' W. L. Barrow and L. J. Chu, 26, 1526, 1529 (1938)
5, Fig. 48; Institute of Radio Engineers (America); paper by G. C.
Southworth 25, 808 (1937). m\
6. Figs. 44 a, B; Journal of Applied Physics; paper byL J. Chu [22].
7. Figs. 48, 49; Physical Review; paper by P\\M Morse and P. J.
Rubenstein [144], \
8. Appendix IT; Mrs. I’. Ince and Royal Soclety, I dmburgh; tables
by &. L. Ince [95]. N
Finally, T wish to thank the. De]egates of the Press for their
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I
HISTORICAL INTRODUCTION

Tag majority of functions used in technical and applied mathematics
have originated as the result of investigating practical problems.
Mathieu functions were intreduced by their originator in 1868 [130],
when he determined the vibrational modes of a stretched membrane
having an elliptical boundary. The two-dimensional wave equat-io{l

&V atr

—éx—g‘i-g?;gﬁ—k%V: \:\ (1)
was transformed to elliptical (confocal) coordinates, and i?h\en split
up into two ordinary differential equations. If ¢ :rzn-ziéi’h, % being
the semi-interfocal distance, and « an arbitrary sepdrdtion constant,
the equations take the form \%

¥

dv 99 603 O210 208" :

@_j-(a—@coszz)ﬁ:\_\.\o, 2)

2,

g_zi;_(a_i%qc?shﬁé)v =0, @t
gt eScoszmp = o ®)

In Mathieu’s problem thg:"bﬁmmeters @, i were real.

It is evident that_(3),'the second of the two equations into which
(1), expressed in elliptical coordinates, was resolved, may be derived
from (2) by writing-4-zi for 2, and vice versa. This reciprocal relation
is sometimes ‘Gonsidered to be a fluke! Equations (2), (3) will be
regavded ivein as the Mathieu and moditied Mathieu eguations
respectigely, for ¢ = 0. Yor the elliptical membrane problem, the
ap‘[{mﬁi'iatc solutions of equation (2} are called (ordinary) Mathieu
fimgtions, being periodic in # with period 7 or 27. As a consequence
of this periodicity, @ has special values called characteristic numbers,
The corresponding solutions of (3), for the same @ as in (2), are known
as modified Mathieu functions, being derived from the ordinary type

+ In roference [103] this is termed the ‘modified Mathieu oguation’. _

¢ Horro writers refor to them as ‘assciated' functions, and others as ‘hypoerbolic’
Mathieu funclions, They eould be designated Mathien functions of imaginury argu-
ment. In view of the analogy with the derivation of the mod_1ﬁe_d HBessal {unctions
I, K, the term ‘modified’ seems to he preforable. Also Tuee in [83] uses the word
‘associged’ to define an entirely different’ set of functions.

44963 B



2 HISTORICAL INTRODUCTION {Chap. I

by making the argument imaginary. The second independent sets
of solutions for the same ¢ are not needed in the membrane problem.
They are non-periodic, and those for (2) tend to infinity with z real.
Sometimes tho solutions of (2), (3} arc designated elliptic and hyper-
bolic cylinder functions, respectively, just as the J-, ¥-Bessel fune-
tions are termed (circular) cylinder functions.

Following the appearance of Mathieu’s work, some ten years
elapsed before anything further was published on the sabject. In
Kugelfunktionen [196] Heine (1878) defined the first solutions of
integral order of (2) hy cosine and sine series, but the coeffiélents
were not caleulated. These series fulfil the conditions f?l\"EOllI‘it‘l'
series, but the coefficients are not obtained by integratierin the
usual way. They have been called Fourier series by ljl‘a:flj' authors.
Heine also gave a transcendental equation for't&;}. characteristic
numbers, pertaining to the first solutions, in tlmgf»ﬁi‘se of an infinite
continued fraction. This form was used to dredt advantage ahout
half & century later by Goldstein [52), m}dxb_fr Ince {88, 92, 93], for
computing the characteristie numberg~dnd the cocfficients in the
series. Heine also demonstrated that whe set of periodic functions
of integral order could be expande@iih a series of Bessel functions.

G. W. Hill, in a celebrated m(,fmmr investigated the ‘Mean motion
of the Lunar Perigee’ [70]) byimeans of an extended or generalized
form of Mathieu equa,tior{;"namely,

2.
X §é+[a—-2q¢(22JJy =0, (5)

where in Hil[:s Lase --2q:4(22) = 2[6, cos 224 Ogcosdz .., == 6,
the § heing dwiown parameters. The work, done in 1877, was puh-
lished i ) (886, The subject of infinite determinants was introduced
into gﬁ;}ﬁysis for the first time, and Hill’s name is now associated
\viig-ky@ii equation of form (5).
NN 1883 G, Floquet published a general treatment of linear dif-
rential equations with periodic coeflicients, of which Mathieu's and
Hill's equations are cases in point [49]. Lord Rayleigh studied the
classical Meldet experiment by aid of Hill’s analysis in 1887 [155
207]. He also dealt with the problem of wave propagation ir;
st.ra,tiﬁed media, and the oscillations of strings having a periodic
distribution of mass [155]. In Melde’s experiment one end of a hori-

T Pogy. Ann, 109, 193, (860
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zontal thread is fixed, the other being attached to the prong of a
massive low-frequency tuning-fork mounted vertically. When the
fork moves along the thread, and the tension is suitably adjusted,
the thread vibrates at right angles to its length, i.e. transversely, at
a frequency one-half that of the fork. As we shall see in due course,
this sub-harmonic of half-frequency is consistent with the periodic
solutions of equation {2), of odd integral order, whose period is 27.
In 1894 Tisserand [213] showed how the solution of (5) could be
obtained in the form of a Maclaurin expansion, He alse described
Lindstedt’s method of solving (2) by aid of continued fractions{the
convergence of which was investigated by H. Bruns [17]. The'theory
of Mathieu functions was extended by E. Sirchinger in that }Q&I {158].
The first appearance of an asymptotic formula for jg.he modified
functions in 1898 was due to R. C. Maclaurin [122]. 'Sofmf; years later
W. Marshall published a different but more detailed analysis [128].
Neither of these authors obtained the constahinfultipliers, which
are indispensable in numerical work. In 3822, however, Marshall
produced the multiplier for his series J& 2‘9} D. Hilbert discussed
characteristic values and obtained an@ntegral equation, with a dis-
continuous nucleus, for the ]n,riodié solutions of (2} in 1904 [69].
The theory of the functions was treated in certain respects by
S. Dannacher in 1906.[26], whilg W. H. Butts oxtended the treatinent
and computed some tahpldr values in 1908 [19]. In that year
B, Sieger published ap i@nportant paper on the diffraction of electro-
magnetic waves by o elliptical cylinder. Amiongst other topics
he dealt with orfthiegonality, and developed integral equations by
means of which™\i¢ reproduced Heine’s solutions in Bessel function
series. Using ah“integral eguation with a different nucleus, he derived
a soluhm%of equation (3) as a series of Bessel function products,
and dlbﬁussed its convergence [162]. This paper does not secm to
ha.sc’been known to British authors, whose contributions after 1108

soptctimes cover similar ground.
It appears that, apart from Sieger’s paper, the subject attracted

but scant attention in the period 1887-1912, owing possibly to a
dearth of physical applications, and to analytical difficulties; for the
Mathieu functions cannot be treated in a straightforward way like
Bessel or Legendre functions. In 1912, however, E. T. Whittaker
started the first systematic study of the subject by a paper read
before the International Congress of Mathematicians [184]. Therein
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he gave an integral equation for one set of the periodic functions of
integral order. A similar equation for the modified functions was
published in 1908 by Sieger {supra), and Whittaker was obviously
unaware of this. Next year (1913) Whittaker published a new
method of obtaining the general solution of (2) when ¢ is not a
characteristic number for a function of integral order [186]. Using
this method as a basis, A. W. Young, one of Whiftaker’s pupils,
gave a treatment of general solutions and discussed the question of
their stability, i.e. whether the solution tends to zero or to infinity
a8 2 — +00 [191]. Recurrence formulae for the Mathieu funchions
cannot be deduced by the direct procedure used for funétigns of
hypergeometric type, e.g. Bessel and Legendre functions. (Whittaker,

" however, evolved a new reethod, and in 1928 applieddit to obtain
recurrence relations for the modified Mathieu fungtigns [187].

From 1915 till his early decease in 1941, thé\Chlef contributor to
the subject was E. L. Ince, a pupil of Whittaler. During this period
he published eighteen papers on Mat-lﬁeti%ﬁnctions and cognate
matters, In his first paper (1815) he obgdihed the second non-periodic
solution of equation (2) when e is a chhr'acteristic number for a func-
tion of period 7, 2w, this being t}}e'ﬁfst- solution [80]. Following this
he treated Hill’s equation on thé'lines of [186], and obtained formulae
different in character from those given by Hill [81-3]. Many aspects
of the subject, including{characteristic numbers, periodicity, zeros,
were covered [87-97 .’\‘He introduced the stability chart (Fig. 8a)
for functions of integral order in 1925 {88]. The culminating point
was perhaps his @ifiost single-handed feat in calculating the charac-
teristic num})qr,s', coefficients in the cosine and sine series for the first
solut—ionx)fzmt-egra.l order, zeros of these functions, turning-points
and valiies of the functions. The $ables oceupy some sixty pages of
pr%tgs-fahd appeared in 1932 [95, 986].

) \A. general study of Mathieu’s equation was made by J. Dougall
I’ three papers published between 1916 and 1926 [36-8]. As well
as & general solution, he obtained asymptotic expansions for the
modified functions with large 2, and a contour integral which, under
certain conditions, degenerates to one for the J-Bessel function.
Unaware of Sieger’s work in 1908, Dougall derived a solution in
terms of Bessel function products. The method of derivation was
different from that of Sieger.

Until 1921 the only known periodic solutions of Mathien’s equa-
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tion (2) had period = or 25, In that year K. G. C. Poole generalized
the position and showed that with appropriate values of @ for an
assigned ¢, (2) would admit solutions having period 2sw, s being an
integer > 2 [150]. These solutions coexist and their sum, with the
usual arbitrary constant multivliers, constitutes a fundamental
system. About the same time Ince proved that two solutions of
period = or 27 could not coexist (for the same «a, ¢), i.e. if the first
solution had period 7 or 2=, the second would be non-periodic [84].
A different proof of this was given a few years later by Z. Markovie
[126]. He introduced some new integral equations of Volterra typein
1925 [127]. N

The second solution of (2), & being a characteristic nu{nber for
a periodic funetion (first solution) of integral order, wag studied by -
S. Dhar in 1921 using a method different from that\of Ince {30].
Dhar’s publications from 1921 to 1928 cover varigis‘aspects of con-
vergence, and integral equations for the secendvsolution [29-33].
Using expansions in Mathieu functions (orgligary and modified)}, he
reproduced Rayleigh’s formulat for the diffrdetion of electromagnetic
waves due to a long metal cylinder of*eliptical cross-section [193].
In 1922 P. Humbert discussed a mgdified form of Mathienu equa-
tion,I whose solutions he called Ma,th!eu functions of higher order’.
He showed the relation betw}een these and the Gegenbauer poly-
nomials [79],

{t often happens that th\:?eruq of functions which oceur in practical
applications are esse\fml in connexion with boundary conditions.
‘The solution for a_tibrating circular membrane is expressed in terms
of J-Bessel andhgizcular function products. The zeros of the Bessel
functions defemine the vibrational pulsatances and location of the
nodal cir c‘}e;m,"w hile those of the circular functions define the positions
of the pgodal radii. In the case of an elliptical membrane, the solution
is enxyrt ssed in terms of modified and ordinary Mathieu function
produtts The zeros of the modified functions determine the vibra-
tional pulsatances and confocal nodal ellipses, while those of the
ordinary functions define a system of confocal nodal hyperbolae.

_When the eccentricity of the bounding ellipse tends to zero, the nodal
ellipses tend to become nodal circles, and the nodal hyperbolae tend
to modal radii. Analytically, apart from constant multipliers, the

" Phil. Mag. 44, 28, 1806. The analysis in Rayleigh’s paper is devoid of Mathieu
functions. "1 Not equation (3).
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modified Mathieu functions tend to J-Bessel funetions of the same
order, and the ordinary functions tend to cirenlar functions.

In 1923 E. Hille published a lengthy discourse on zeros and cognate
matters. He also gave another proof of the non-periodic nature of
the second solution of (2), when « is a characteristic number for the
first solution of period m or 27 [71]. A table of zeros of eight of these
latter funetions was published by Ince in 1932 [96]. At the time of
writing, thero is no table of zeros of the modified functions, but for-
mulae are given hercin from which the latger zeros may e computed.

During recent, years the problem of frequency modulation ingaddio
transmission lLas assumed importance, in particular since(the fre-
quency wus raised to 45 megacycles per second or more. Fhe gub joot
was studied analytically by J. R. Carson in 1922 x):lig\'dcalt with
the simple case of a resistunceless oscillatory electriealeircuit having
& periodically varying capacitance. - An ap_prox}}{iate differential
equation for a circuit with capacitance C(t) =G0, cos 2et, where
() <€ 0, is a Mathieu type. Values of the Giveitital paranieters were
such that the solution could, with agequate approximation, be
expressed as a series of eircular funétions whose coefficients were
J-Bessel functions. These cocfficignts give the relative amplitudes
of the “side-band frequencies’ Qu sach side of the central or *carrier
frequency’. The latter is said¥6 be ‘frequency-modulated’ [21].

In 1934 A. Erdélyi studidd the problem above, when the circuit
contained resistance. S¢lutions were obtained for stable and unstable
cases, by aid of ipt\-e@r&l equations. Both solutions were better
approximations Aban that of Carson, and revealed the fact that
‘amplitude modvtation’ of the ‘carrier’ occurs as well as ‘frequency
modulatior'l,’;[l‘ﬂ.

In IQSQgEfdélyi obtained a solution of equation (3} by aid of the
Laplaggjintegral. He derived another form of asymptotic expansion
and-gave relationships of the type y,(zefmry oo pum
Gnteger [47]. .

In the period 1932-6 W. I,. Barrow treated problems on electrical

circuits with periodically varying parameters, hoth analytically and
experimentally {2, 3, 4], : '

Sometimes in applications the parameters of a differential equation
are suich that it lends itself to »

Pproximate methods of solution. In
1923 H. Jeffreys gave an anal

y ; ¥§is pertaining to approximate solu-
tons of (3). He also ohtainod asymptotic formulae. The results were

"§1(2). ¢ = ni, n an
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applied in an investigation of the vibrational modes of water in a
lake whose plan view is elliptical, this problem being of special
interest in hydrodynamics. Numerical data were obtained for a
numbher of the lower modes, their periods and the tide heights being
computed [101-4].

The making of numerical tables usually receives little encourage-
ment, while the thanks offered by the user are parsimonious rather
than plentiful. We have already referred to Ince’s philanthropic
gesture in computing tabular values. In 1927 8. Goldstein published
the results of extensive work on Mathier functions, and incluc{ed
a set of tables for five of the periodic functions of integral order\{52].
Following Heine and Sieger the tabulated functions are deﬁned as
sine and cosine series, the coefficients and the cha,ractenstw numbers
being given for a wide range of ¢. A new and acceptable normaliza-
tion of the functions was adopted, this being based upon their ortho-
gonal properties. The same publication containdfadditional integral
equations {akin o those of Sieger and Whittaker), some asymptotic
expansions for z large and g large (conu’{le}e with multipliers), an
asymptotic formula for the charactefistic numbers,i and formulae
for the larger zeros in g of the n}qdlﬁcd functions. There is also
a general discussion relating to the' second solution and an extension
of Heine’s expansions in Besse"t funetion series, the I- -type being
introduced. In additionak papers (oldstein extended Jeffreys’s
investigation on elhptlgxbtxlakeb and his own researches on charac-
teristic numbers [5347.

The problem of @ddy currents in & straight conductor of elliptical
cross-section wa&investigated by M. J. O. Strutt in 1927 [167]. He
assumed constant current density at the surface. As this is untrue
in practied, his analysis is mainly of academic interest. In common
with oth}ﬁr boundary-condition problems, the wave equation ex-
pres&ed in elliptical coordinates is separable into two Mathieu equa-
&ione like (2), (3), but in the above problem g is negative imaginary.
Strutt has solved a variety of technical problems involving Mathieu
functions, e.g. diffraction of plane waves at a slit [173]. In 1929 he
published a detailed study of the characteristic exponent p in Hill’s
equation (5) [171]. A list of his other works will be found in the
refercnees at the end of the book.

+ Ldentical with that found indepondently by Ince using a different procedure
[92, 931,
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When experimenting with a moving-coil loud-speaker in 1925, the
author found that under certain conditions the coil, although
actuated by a sinuscidal current, moved out of the magnelic field of
the magnel. The analysis, published in 1933, involved a Mathieun
equation. Its solution for the axial displacement of the coil was
characterized by a dominant term having a period much greater
than that of the driving current. Reduction in amplitude of the
latter resulted in an increase in the period of the dominant term,
and vice versa [201].

Oseen’s approximate differential equation is familiar in hydro-
dynamics. As might be anticipated from this equation, calculation
of the vorticity in a viscous fluid flowing past a very lon§ slliptical
eylinder in its path necessitates the use of Mathieu fung¢tions, Thiy
subject was studied by M. Ray in 1936 [154], and bfy'I). Meksyn in
1937 [187). In 1938 T. Lewis published a generdl treatment of the
probleny of circular and elliptical eylindersiand & flat plate in a
viscous fluid [116]. He showed that the sglution given by Meksyn
required modification to avoid infinite c&dulation of luid. In 194
T. V. Davies made a detailed study Ot tho flat plate using modified
Mathieu functions, whose behax{igl’n‘ he investigated in the neigh-
bourhood of the origin [28]. %"

About fifty years ago, theftiﬂilsmissiorl of electromaguetic waves
within hollow metal cylinders was contemplated by J. J. Thomson.
0. J. Lodgef veriﬁed'thétheory qualitatively using a hollow metal
cylinder having a sta}li gap and fransmiticr at one end, the other
being open. Threeryears later Lord Rayleigh§ showed that thero
was & pluralit et modes in which clectromagnetic waves could be
transmitbed Apithin a perfectly conducting uniforin eircular tube of
unlimitgdNength. Using modern electronic devices, it is compara-
tive!y}%zasy to incite the transmission modes of lower order within
a 11:&110\1’ metal cylinder, now called & ‘ wave guide’. No cylinder is
plérfectly cirealar, so to ascertain the mftuence of deviation from
clrcular_it-y, L. d. Chu in 1938 investigated the propagation of electro-
magn.etzc waves within a hollow cylinder of elliptical cross-section,
jjdn;g;:ﬂ’;)jde;}ﬁ?ed, the f?na,] refs%ﬂt entailed products of ordinary

. vthien functions of integral order, the former having
period =, 27 [22]. ’

¥ Rerent Rescarches {1893). Prog tErid i ‘
§ Pit, Mg 43, 1o vak 1 Proc. Roy. Institution, 14, 321, 1894.
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In 1940 W. G. Bickley published new solutions of (3) with ¢ < 0,
these being expressed as expansions in /- and X -Besscl functions [6].
He also gave integral and asymptotic formulae for these solutions.
During the same year J. (i, Brainerd and (. N. Weygandt published
data regarding general solutions of equation (2), when a is not a
characteristic number for functions of integral ordor. The data were

" given up to z == 0-3m, using the Maclaurin method of solution (see
§ 4.40), with terms as far as y*9(0). Beyond 2z = 0-37 the solutions,
given in the form of curves, were extended by alternative means [12].

In 1943 8. Lubkin and J. J. Stoker applied Mathieu equationsto
investigate the stability of columns subjected to a steady pull, with
a periodically varying force superimposed [121]. S
What precedes is merely a brief survey of salient matter¥ relating

to Mathieu functions and their applications to techmt il Jroblems.
The work of other anthors, too extensive to be emlmnui in detail,
is given'in titular form in the list of referenceg\duvpp. 373-81.

The occurrence of Mathien functions in practical applications may
be divided into two main categories. First\tHere are the boundary-
condition problems arising from sclutiew of the two-dimensional
" ~wave equation (1), when expressed\in elliptical coordinates. As
stated previously, this yields a pa;ii' ‘of Mathieu equations like {2),
(3).1 The appropriate solutiontef (2) is usually a periodic Mathieu
function of integral order, ¢while that of (3), in the cases of the
elliptical membrane am.}‘tlk wave guide, is obtained by making the
argument of this solution imaginary. Secondly there are what may
be regarded as initiab-value problems, in which only one equation
like (2) is involyeft/ Usually « is not then a characteristic number
for a function of\mbegtal order having period 7 or 2w, and the solution

T general‘m ﬁype It may () have period 2s7, & an integer = 2,

" (b) be nge-periodic but bounded as z - 4-00, (¢} be non-periodic but
‘unbatinded as z — -}-20. Frequency modulation and the moving-coil
18udispeaker (see Chap. XV) are examples of the class of problem
in question. The majority of applications, to date, pertain to the
first category and involve the wave equation.

1 In the analysis of Melde's experiment, tho differential equation is in & and ¢
coordinates, the solutions of the two resulting egquations being circular functions in
=z, and periodie Mattuea functions of integral order in ¢.

4864 o



PART I
THEORY OF MATHIEU FUNCTIONS
I
FUNCTIONS OF INTEGRAL ORDER

2.10. Canonical form of Mathieu’s equation.s In solving the
problem of the elliptical membrane [130], Mathien obtained a dif-
ferential equation of the type N

gy =0 LD
We shall regard this as the canonical form—ruled bjfhg"‘enera.l usage—
of the equation. At times it may be expedient.fo teplace +q by £
The parameters @, g = k%, will be limited \to.real numbers, unless
stated otherwise, but z is usually unrestricted. The equation is a
particular case of a linear type of thé\décond order with periodic
coefficients. Its solution takes differéntforms according to the values
of ¢, ¢. For the present we shall\genfine our attention to solutions
having period = or 27 in z. In the membranal problem, the displace-
ment from the equilibrium pesition is a periodic function of one of
the coordinates.i Thusdf.g is assigned, y will have period 7 or 27
in z, provided a has on®,of an infinite sequence of particular numbers.

30
2.11. Solution of (1) § 2.10 when ¢ —= 0. Under this condition
the equation lieéomes

. dﬁy .
@ S tay =, (1)

and it'h\éonvenient that the solution of (1) § 2.10 should then reduce
i'fr;\.éo'ssmz or sinmz. Accordingly we put @ =m?, m=1, 2, 3,..,
"j~§héreby obtaining the pairs of distinct solutions +-cosz, —+sinz;
Feos2z, 4-8in2z; and 80 on. When m = 0, we take the respective
solutions to be 41, 0. Also wntil and unless stated otherwise, we

shell adopt the convention that the coefficient of cosmz and sinmaz
is unity for all ¢ [130].

T For a circular membrane the displacement at any radius depends upon zﬁ:(mﬁ}

andvis, sherafore, 8 periodic function of § (202, p,

. 27). The displac ipti
mmetmnbrane is periodic i the dlliptical conrdina ] lsplacement of an elliptical

te {2 in (1}}, as shown in § 16.11.
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2,12, Dependence of 2 upon ¢ for a periodic solution. When
q # 0, a, ¢ must be interrelated for the solution of (1) § 2.10 to have
period = or 27, 80 ¢ is & function of ¢. If we write

@ = m*+o g+, ¥ tay g+, {1)

the desired form ¢ = m? is obtained when ¢ = 0, and the equation
then reduces to
d% .

whose solutions are +tcosmz, fsinmz, Conventionally we a-dop@
& posiiive sign. A
oA\
2.13. Periodic solution of the first kind. To illustrate one '
method of finding & particular periodic solution of (1) § 2. IO, we take
the case where a=m?=1wheng= 0. Then by (l) §2 12 we have
forgq z v .‘
@ = 1+m+am“+a3q3+--\- ' (1)

Since the solution is to reduce to, say, er.z > when q vanishes, we
assume that
y = ©08 z+q01(z)+qzcz(z)+q"63(2)+ )t
€1, Ca,... being functions of z to be dﬁtermmed Subst1tut1ng {2} into
(1) §2.10 and using the value ofa. from {1) above, we get

Y= —cosz+qc\—|—q2r2—|—g3r3+

ay = cosz—+ A4y €09 2) 4 q3(e3+ oy €+ CO8 )+

Y gHegtay eyt g€ Fageosz)., (3)
—~(2q cos 2z)y = «—~g(cos z+cos 3z) — 2¢%, cos 22—
\ —2¢%czc082z—...
Equa.m}gsé‘&\mclentq of like powers of ¢ to zero gives
¢ _ O ) €08 Z--CO8Z = (4)
q A i+ e, —ec08 324 (x;—1)cogz = 0, (5)

of which the particular integral corresponding to (a;—1)oosz is the

+ In ref. [158} it is shown that the solutions of Mathieu's equation, having peried
7 or 27 consist entirely of cosine or sine terms, and not a combination of the two.
In ref. [223] it is shown that if one solution is even, the cther must be odd. Thus
two independent even or two independent odd solutions cannot oceur. The only
singularity of (1) § 2.10 iz an essential one at infinity due to cos 2:. Hence every
solution iz an integral function of =,
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non-periodic funetion §(1—ax;)zsinz. Since y is to be periodie, this
term must vanish, so
I s oy == 1 . (6)

while . e;+¢; = cos 3z, (7

Now the particular integral of v"-} v = A cosmzis —A4 cosmz{(in*—1)
(m=£1),s0with 4 =1and m = 3,

1
€, = —--C08 32, - 8
1 3 8 (8)
Inclusion of ig;z [complementary function of (7)] in (8) "\{ould

involve a term in qsm z In the sotution. By §2.11 the coefﬁcient of

cosz is to be unity for all ¢; also sinz is odd. Heneg\the C.F. of

{7) and subsequent equations is omitted. _ (n.’;.
¢  ogtey a6, —2¢, cos 224 0ty COS 2 \zi—:'.tk (9
Substituting for oy, ¢, from (6), (8) and expre%ssixlg c03 2z cos 3z as
a sum of two cosines, we get N
vy 1 1 Y
c2+cg—-cos3z+—cos5;,-|‘-,(z+ az)cosz = {. (10)

As before, the particular mtegml Pertaining to ({--«,)eosz is non-
periodic, so

*.’; ’ 1
N, = -, 11
N ] g ( )
while ¢ @ﬁ-ra = —l_cos,‘%z——écosa‘iz. (12)
Q 8 8
By aid of the gt%néral formula above, the particular integral is
AN 1 1 .
"\.“ €y = -@00333—1—1100 Bz, (13)
Proce‘e\hng in this way leads to the results:
o 1 1N 4
\\: Wt = e €3 == — ,l‘)(gcm.}r—w’eoh rf—|-—l cos .rz), {14)
g == 1 |

_ 1 m 1 1
.c4 4_{196( oss,,.+ cos'ﬁ.,-—l—zcos fz—_ﬁ-éeosgz) (15)

and =0 on. '

Substituting for Gy Lgpoe i (2) gives a solution of Mathieu’s
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equation, periodic in 2, with period 2m. It is dencted by ce,{z.¢)F
and represented by the series

: 1 1 1
ne.(2,q) = —= 83z} —qg? — : — 5z —
r\e.l(z g) = cosz Sqem z+64q ( COos ‘iz—]—gcos z)

—5—12g (% €Oos ‘37-%00352—{——003 72)—f—

1 11 1 1
== - ——cos 92| --O(¢). (16
—]—4096q (9 cos 3z—]— cos 5z 13 cos 7z - Ucos ) - O{gs). f:}
The value of ¢ necessary to yield this solntion is found by snb-
stituting the « into (1), Then we get ™

'\
N

¢ = 1+9—é9“—-§493 10369‘ +—;(---804 5+O(q") (17)
For a given ¢, the value of a found from (17)Js called the charac-
ter-i_stic number of the Mathieu function cel(z,Qk YWheng=10,a=1,
and the r.h.s. of (16) reduces to cosz. <
The notation ce_{z, ¢} signifies a cosme type of Mathieu funetion
of order m, which reduces to a multlple of cosmz when ¢ = 0. Since
m may be any positive integer, there is an infinite number of solu-
tions of type (16). These func‘slom are even in z, being unchanged
if —z is written for 2. .."

2.14. Another permd’ic solution of the first kind. In accor-
dance with our conven\hon in §2.11, if m? = 1, the second solution of
(1) §2.10 redunces fo\sinz when g == 0. If we assume a solution

A sin g ()4 gPsafe) -+ Poyl)+ (1)

7'\W .
and procegdias in § 2.13, we obtain a sine type of Mathieu function
demgna.ted se,(z,¢).1 Thus

8 (z’; q} = ging — 1q sin Bz + g (sm Sz—]- sin 5z)

— 512q3 (ésin 3z gsin 52 4~ %Sin Tz) +

—[—Wl% q‘(-—% gin 32—:«-%31:0 Bz b j'l-j sin 7z -+ i-zls_()Sin 92) +0g"), (D)

T ‘ce’ is an abbreviation of ‘cosine.elliptic’, intreduced by E. T, Whittaker.
I ‘se’ is an abbreviation of ‘sine-elliptic’,
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i)rovided

1 1 11
@ =1—qg—

oy Loa L4 54 0(g"). 3
87 7547 15367 3espal T U0 ®)

This particular value of @ is the characteristic number for the Mathien
function se,(z, ¢}, periodic in z with period 2w, which reduces to sinz
when ¢ = 0. Since se (z,q9) = —se,(—z,q), the function is odd in 2.

. F1e. 1. Graphs of re,(z, 2), ce,jzy’g], ceg(z, 2) over a period 2q,

g\

VvV

Fra. 2. Grapis of aey{z, 2), seyiz, 2}, se

sta, 2) over & poriod 2a.

If in {16) §2.13 we write {(§m—2z) for z and —q for ¢, (2) above is
rep?*od.‘wed, and viee versa. Since the values of ¢ differ for the two
periodic functions ce,, se,, these functions are not solutions of the

same equation except when g — 0. The graphs of these functions
for ¢ = 2 are shown in Figs. 1, 2,
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2.150. Periodic solution of (1) § 2.10 of order m. To derive
this, we assume for the cosine type of function that

y = cosmz+tqc,{z)+g%,(2) +¢%c5(2) 4. (1)
and ¢ = m o gt gt ®+.... (2)

The solution obtained is either of the class ce,,(z,q) or cey, (2, 7),
according as m in (2) i even or odd. If m = 2, we find that

: 1
veey{z,¢) = cos 2z — éq (é cosdz— 2) + 3@‘22 cos 62— I\

! ! — €08 B2 - - 3(:os4z—|— + ~’\’\"\
—5? s

0".
<

1 l 293 N, °
i § B 2102 422" cog 6 Olg), 3
+ 40067 ( 10" zJ“.fy;{)““”.’m%\+ @, @
_ 5 76 0240
with =41 g 53 ¢+ 2 }\? +O(g®). (4)

19 135824 796 ‘w\)m

Then ¢ reduces to 4 and ce, to cos 2,, When g = 9, which is in
accordance with our convention in § ‘?‘,ll When ¢ # 0, the function
has a constant term whose V(LIII(,JE*

— g+ O0lg"). {5)

The graph of ce,(z, 2)\'@* shown in Fig. 3. This funetion is periodic
in z with period =,.% D)
In the particular’case of m = 0 in (1), (2), we obtain
x\"

ceqy(z, ¢ \kw g cos 2z -}- = q cos 4z — --——q ( cos biz—7 cos Zz) +
O 4 _g*(cos Bz~-320 cog dz)+ O(¢%), (6)
\ Y ;3728
1
.th e e e R, 3 . 7
wi “ 57 %;q zio4q +0(@) @

Then ¢ = 0 and ce, =1 for g ==0. Here again the function has
a constant term. In general this holds for all the functions ce,,,
but not for ce,, ;.

To derive the sine type function of order m, replace sosmz in (1)
by sinmz and ¢,(z) by 8(z). The solution obtained is cither se,,,, or
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88y, 19,7 according as m is odd or even. If m = 2, we have
RTar

. | [ o
g8,(2,¢) = sin Zz—l—ﬁgsm 4z+3ﬁq sin fiz

i 3 L3 y_§ ‘i[ 43)-
~ 5154 (4—551118,. S0 +
1o ,-,__3_7q';1{‘z)- O, (3)
_f-m%q (%nml(ﬁ, 5ag 6 1 Oty
. L S I ()
with 4= ARl g U@, \

o re se, s,

¥ie. 3. S Vi, 4,
Fia. 3. Graphs of cey(z, 2), cca{a'{l: “8y(z, 2), ez, 2) overa period 7, For 1 funlte - 0,
80 >0 s 0 5t oo, coyimm, ¢) - 0.

Fie. 4. GraphésQ\ﬂs;és(z, 2} meglz, 2), seqlz, -) over a pepiod .

When g =0, ¢ re(liices %0 4 and seyz,0) = sin 9. The function
8Cy(2,¢) is periotit’in z with period 7. This is shown graphically
in Fig. 4. 7y

2.151.‘o¥6r’111ulae fora. We designato the characteristic numbers
for ce,ﬁ{é,g) and se, (z, ¢) hy By B respectively, Then

N\ TGO

Q1,7 29 68687
e - I 4 2 gt 8 10y 1
0T T R Bt i ZEr R W

1 1 1 11,
b BN P .| o 3_______ 4________ S
1 I3 %~ 15550 7363617 1
49 a5 265
— g5 __ — a7 §_1 9 2
539834 013t T iragm 0. @
2y = write —gq for g in {2), ' (3)
t Tlu.a significance of 2n-1-2 in pluce of 25 is thut » represents tho number of real
Zeros of cey,, cay,, |, 5ntts 0., , int the open interval O .- g 47 (o6 Chap. X
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289 21391
A 4____ 2 P — - 8 8 103,
2 134 +158.34 796 263307 T 45 seari azoo? T @)
(4)
763 10 02401 16690 68401 -
2 __ 6_ B Ol
+ 59 " 138947 THo6 363407 45 86471 422007 T 0@
(5)
1 1 13 5 1961
by = 0L g% __ 4 5 L]
8 = 9+ — 5 T unise? Tressa? 935 oz060% T
' 609 '
. a7 ] P
* 1648 s7600¢ T V@R
aq = write —g for g in (6). AN ()
7'\ *
: 1 317 10049 C
by == 164 g?— o o 909 e o), A 8
. 5% ~§5i000? T 27316 00000 ¢ T2 o\ ()
433 | 5701 . (.
_ Loe, 438 o, OO0 e gy, 9
@y 16+30q +3 (;‘,40()09'f 27216 OOOOOQ N m\gj (9
O
i1 1 BT
b, — 25 2 1 64 O(g7). (10
5 +48q +rraaa? 1 47456 +B918 1sess? T V- {19)
a; = write —q for g in (10). RO _ (11)
1 187 V58 61633
b == 36 g T gty T TR 8 O B . 12
o +70q + 139 04000g p 9203 59872 ooonod T O U8

187 67 43617

G‘ - B v
% = 36+ g +43.J oaoqu - 3293 59872 000001 +0(@). (13)

When m 2= 7, the foll\» ring formula is correct as far as and ineluding
the term in g% ;"

(3 qm2+7 "
@ bon \+2(m“ Vit 1 T
A
A\ 9mi 4 58m>]- 20
O . +64(m2 15(mE—4)m?—9)7 e (M)

‘jﬂuese formulae may be used to calculate ¢ when g is small enough
and of either sign. For equal aceuracy, ¢ may increase with increase
in m. Tt must not be inferred froug (14) that whenm > 7, a,, = b,,.
Series (12), (13) for by, a, are identical up t0”0(gY), but not there-
after.t An extension of (14) to higher orders of ¢ would show the
same behaviour. As |¢f >0, a, — b, but for |g| > 0, (a,—b,) #~ 0,

t For m = 3, the series for o, b, are identical up to ¢ or %2 adeording as m
is odd or even.
4861 D
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although- it is very small near ¢ — 0, Under this condition the
characteristic curves for ce,,, se,, are substantially coincident (zee
Fig. 8). In (14) when m? is much greater than any subsequent term,
a,,, b, arc almost constant, so the characteristic eurves are practically
paraliel to the g-axis,

2,152, Remarks on the periodic Mathieu functions of inte-

gral order,

1. The funetions ce,,, » = 0, 1, 2,..., have period =. There\is a
constant term in the series, which is a funetion of g. As& ton-
sequence, ce, is never negative, although oscillatory, O

2. The functions ce,,,;, n = 0, 1, 2,..., have period 27 There is
no constant termm in the serles. ¢ \

3. The functions se,, 4, » =0, 1, 2,..., have peeiocl 2or. There is
no constant term in the series. “\ .

4. The fanctions sey, s, # = 0, 1, 2,..., hawe'period #. There is no
constant term in the series. x\\

5. All the above functions have » §e.-§ﬂ\zéros in0 < z<<in

2.153. Dynamical illustration,- The differential equation may
be written ’

diy o8
?.u_af{"’y == (2q cos 2)y. {1}

Referring to Fig. 5 {A)j.}f = gfm, 2¢ == fofm, (1) becones
KO my sy = (fyoos 2y, {2)
which is the differential equation of the mechanism illustrated there,
provided y[l:~:<<,\ I, w=1. A mass m Is fixed to & massless helical
spring of-gtiffness s, and driven along the linear axis of the spring
by a.f&ce (focos 2t)y, which depends upon the displacement y. If
m, 83 have the appropriate values, ¥ may take any of the forms
W Ba)s COap Ly, 85 1 80,49 SUPPOsE ¥ = ce,(t,q), then the motion is
\(}escribed by (16) §2.13, and the component cost is a sub-harmonic
of cos 2¢ in (2) above. This remark applies also if m, &, f, are such
that i -~ se,(t, q), by virtue of the.component sintin (2)§2.14. Hence
in any system (dynamical, electrical, ete.) represented by (2), it the
parameters @, ¢ have certain interrelated values, there

will be & sub-
harmonic of f,cos2t, In any event, go loug as the parameters are
those for a function having

period 7, 27, the displacement (or jts
equivalent) has an infinite number of harmonic components corre-
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sponding to the various terms in the series, e.g. (16) §2.13, (2) §2.14,
{3) §2.150. Additional comment is made in §§ 15.40, 15.41.

£ (feos2wi)y

Slnde £,
l'_r'?';hjl'l‘ N

Massless spring

stiffress ¢ Ay b cas2 it

gurde &5

O\
L\
N\
() L¢
Drivin‘g/rr"orce 5

Fra. 5. {(a) Schematic diagram (plan} ()f mg:‘lnnumu illustraiing Mathion's equation,

{r) Curves illustrating motion of m a.mi t“hﬂ point B when a sub-lharmonic of pulsa.-
Janeo w ovvurs,

.«\
2.16. Mathieu funﬂt}‘mis of fractional order.t We define a

function of order » {réal But either rational or irrational and positive),
te be one which qg‘bwﬁeg Mathieu's equation and reduces to coswz,
sinyz when ¢ 0. The normalization in this section corresponds to
that of § 2.11;'96 the coefficient of cosvz, sinyz is unity for all ¢. If
we assume't \at

cev(zDQ) = ¢u8 V3'+— ilqrcr(z}s (l)

\ )" se,(z,q) = sinvz-- ria‘,_q’s,,(z), (2)
. r=1

o == V2+r§1rxr q", (3}

t Although the title of this chepter unplies functions of integrel order only, those
of fractional order are introdurod here becanse their expansicns under the normaliza.
tion of § 2.11 are obtained in ascending powers of 9 by a procedure akin to that used
for the former. A different definition is given in § 4.7) under the normalization of
§ 221,
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and proceed analytically as in §2.13, the following resuits are
obtained:

cez, g} == cosvz——_¢q

1 {cos(u—}—mz c('J_E_.(v_—Q)z]_!_

y R
1 [ cos(»+4)e cos(v—4)z ]
i [y e ]

e—DE+10+2)  FD—1%0--2) T

1, (vz—i--4V~[--7)OOS(V+2}2_(v2—4v—[—7)(30$(v—2)z
- [
eoslv+6 cos(v—6)z ] ‘"\(4)
3(v-EDv+2)(p1+3) '3(v—l){v—2)(v—-3)'\:\’
sin{e-+-2)z  sin{y—2)z O
e+ ) ]+

1 [ sinfp-4)z ﬂ_{';ill'\(f;:"“é“)z —, (B
+at {(v+l)(v+2) (1’—;’1)(”—2}] @

i )
se (z,4) = sinv —a7

(502 T)\D

1
— 2 a2 ) "
= +2(V2—-- .I)q +32(;,‘d_.“ .l)?.(?@“_a;}g +
QW58 199
"l_,eaf(.pﬁ_l)s(ﬂ_*)(va__Q)‘i' | (6)

These formulac are suitable ib§ \omputation when ¢2/2(:2—1) < 2,
v > 0. ¢ has the same valug¥or both solutions for any ¢, so (4), (5)

coexist, and are linearly independent. Thus the complete solution
with two a,rbit-rary.cg{ﬁstants is
N\ ¥ = 4 Cﬂv(z, Q)_E" Bsev(zr (I)s (7)
provided v 1s 'n(il’l’-ﬂltegral. (4), (5) constitute a fundamental system.
Since (8)ds'even in g, the characteristic curves, showing the rela-
tionshiy\%{gtﬁ'een a, ¢, for ce,(z,¢), se,(z,¢) are symmetrical about the
@-axis! Put v — (m—8), m being a positive integer, and 0 < B < 1.
L= p/s, a rational fraction in its lowest terms, the funetions have
“Period %ms in 2z, ¢ =2, If B is irrational, the functions are non-
\)eriﬂdic, but they are hounded and tend neither to zero nor infinity
as 2 — oo,

2.17. Preferred form of series for o2, 4), se,(z,q). The form
of the series given hitherto precludes the applieation of standard
convergence tests. In [180]it is shown that by constructing a ‘fone-
tion majorante’, the series for ceglz, g) converges if |42 <= 1. This

is the only case which has been treated. Generally the series appear
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to converge if ¢ is small, but diverge when it is large enough. The
preferred form of the series is given below {52, 88, 95, 162, 196] for
g positive: '

Characteristic
number
Ge2'!l.(z’ Q) = TZI] A(zfiu) 08 272 v (a211) (1}
cezn-l—i{z: g) = r‘:{) Atﬁ AR (JU"( }3 { ] ) (azu+1) (2}
« , N
88g,,41(2,9) = BEVsin(2r 1)z {2 W M3)
= O
o £ "\ ”
se2n+z(z, q) = ,.2'0 _ng‘ﬁ__;z) bm(ir-ﬁ- 2)2 (bzn 1'3) bt (4]

In these series A; B arc functions of g, This will 13%’6&7£d[311t if we
express (16} §2.13 in the form (2), with n = 0, Fhen

cey(z,q) = A, cosz+ Ay cos 324 dgeos Szt (5)
where under the convention of §2.11 \ v
A, =1forallg; A= ——g 14 ;qu-iq o
! e T1927 T 4608

A, = 1‘)g( e 1_{_1%94_}_ ), and so on.

When the 4, B are obta.“‘n}d by the method used in §3.13, and the
solutions are nomnahz}sﬁ* in accordance-with § 2.21, their convergence
is readily demonstmtcd This is left until §‘3 21.

2,18, Changmg the sign of ¢. If in (1} § 2.10 we write --(§n3tz}
forz ith c:olnes
O\ y"+(a+2g cos 22)y — 0. (1)
Cons‘equentlv the solutions of (1} §2.10 with period =, 27, g being
soative, are obtained if the abow substitution is made in {1)—{4)
§217. Hence, standardizing on (}=—z}, we get [52, 95]:

ceﬂn,( '_?) ("_ 1) Ce‘Zn(%W—z! Ei‘)

= (=1 i (— 1y AE cos 2r2 v/ (@), {2)

=

=

Ceyy 1( q) - (_L) %e"aHl( T —R Q)
(1) 3 (Y BE P eos@rt e (Bai) (3)

¥=0
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ez —q) = (—1)7 cey (G —2,q)

= (—1)

¥

(-1yASiVsin(r 1)z (@), (4)

[\t

i

4]

s€p,12(2, —¢) = (—1)*sey, 5(im—2,9)
= {—1)* i (—1yBE D sin(2r+ 22 (by, 00 (5)
r=0 _

Since cey,, ,1(z, —¢), 864, .1{2, —¢) entail cosine and sine series, respec-
tively, they are derived from se,, (2. ¢) and ce,, . {2, ¢). Accordingly
the 4, B, and the characteristic nambers are interchanged, i.e. 4d, a)
and (B, h} accompany each other. The multiplier (—1)* ensures’that
when ¢ = 0, the functions reduce Lo +cosmz or }-sin mz, \a‘i-§~ﬂm CAEC
may be, W

Any linear  differential equation of the sccondﬁ'}i"der has two
linearly independent solutions, that is to CER Lil’@ftf&re not propor-
tional. All solutions of integral order obtaited hitherto are of the
first kind. The sccond solutions require sepatate consideration, and
being of less practical importance ﬂliLllj.‘{éSﬂ'th kind, are treated in
Chapter V1I. PAY;

2.19. Orthogonality of the petiodic functions ce,, se,. Let
¥1» Yo be solutions of A\
y”»]—“(wv—ff?g cos 22}y = 0, (1)

for the same value of ¢, h wsually different values of a, e.g. @, .
Then ..\'\‘»?

Y- ((1,1---—2;3‘('305;.23)3;1 =0 and  yi4-{u, - 2q cos 22)y, = 0. (D)
Multiplying the$itst of these equations by y,, the second by y,, and
subtracting/ gives

%” N Y Yol == (ta—a)y, v, {3)
Tn!:g:\gj;%ﬁing both sides of (3) between the limits 2, 23, we geb
f Yu dyy — J Y1dye = (y—ay) f Y14, dz, (4)
ot ] =31 Zr

which after integration by parts becomes

[nye—vam )3 = (ay—ay) f Y1z dz. (5)

For a given ¢, the « copres i M e o
g ¢ the « corresponding to Yo = ce{z,q), yy = ce, (%, q),

\
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m £ p, are different. These functions have period @« or 2w, s0 with
2, = 0, 2, = 2w, the Lh.s. of (5) vanishes. Hence, it m & p,

2

J ce, (2, q)ce,(z,9) dz = O, {6)

0

When m -= 2z, an even integer, from (1) §2.17, we have

F w 2
J cel (2, q) dz J Z [AZM cos 2rzP dz = 2 J. [AEMT? cos®2rz dz,
Q e 7 r=0 0 (7)

since by §3.21 the series concerned are shsolutely and uniforlili\'
convergent, term-by-term integration being permissible. Théogher
integrals vanish by virtue of orthogonality of the cireulay funlctions.

Thus N
2m o X7, \
| cebu(zg) de = 2ol AP P 3 [AGHY )
e r= v
The results given below .nmjr be est-ab]ishc('l:iu\ﬂ: similar manner:
2 . . "'x\ -
[ cehuialzg)dz =7 3 [ABVP ()
it R
o A '}; \
Ise,n{z, g)se,{z,q) dz 0 (m # p). {(L0)
13
25 i.«\ o :
el (levg) dz — 7 3 [BETDE 11
[! 2‘%\(\11 7’}_2_0[ 2rl1 | (1t)

2T

J é;g’)sep(z, g)dz == 0, m, p, positive integers.  (12)

] \,
\w o
2 12)72 :
O [ sedlan g de = wZ{B%’;E T (13)
o 0
w\s W . .
These results are valid for all values of ¢, and lead us to the
important conclusion that ve,(z,¢). e, (z.¢) wre orthogonal. This

fundamental property is used in §§£00, L0640,

2,191, A fundamental identity. Tu (5) §2.19 let ), 4, be
independent solutions of (I} §2.19 for the same ¢, ¢. Then with
zy = 0, 2, = 2, we gei the Wronskian

(2l — 12@y1(z) — 300} (N (0) == €% a constant. (1)
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yleale)—vel@)yi(2) = 1. (2)
For a given pair of independent solutions, ¢ will in general vary
with g. '

2.20. Orthogonality of functions of rational fractional order.
Since ¥y, y, in (5) § 2.19 are any solutions for the same ¢, the formula
is valid- for functions of rational fractional order ». Then by §2.16
the period is 2ms, so with z; = 0, 2, = 2ms in (5) § 2.19, we h::g{e

Aws 2ms
Jﬂ ce,(z, g)ce, (2,q) dz = f se,(z, g)se, iz, 9) dz O\
0 . 3 \\ ’
273 (‘.;‘.
= [ ce,eg)so () dz = 0, (1)
o ; K
provided v # u in the first two integrals. z\ilﬁ()
e 2w -':1. !
[ cettz.q) de = 0, 6[ &z, q) de. o 0. )
[T . 0

Hence the periodic functions of @'&ﬁon&i) fractional order are ortho-
gonal. The value of these infggrals is given in §4.72.

2,21, Normaliz'ati{izyﬁof {2, q), 88,(2,4). In §2.11 we intro-
duced a convention $hat the coefficients of o8 iz, sinmz should be
unity for all values of ¢. Thus in (1)}~(4) §2.17 we should then have
AY == BUY =16t all ¢. It will be shown later that constancy of
these eoeﬂieief}fs leads to undesirable consequences. Accordingly we
now introdiee an improved convention based upon §2.19 {52, 95).
We shah\ma,ke definite or normalize the functions ce,z, q), e, (2,¢)

|

by thk stipulation that
4 .\" > 3

" \¥ : 2r 2
) 17 if
N - | ehegae=1 | gz =1, (1)
LI} ]

for all real values of g. Then by (1) above and (8) $2.19, we have
2LAEVPL 3 AGOE =1, @)
r=1 .

Now ceylz,0) == 1 by our convention. ot §2.11, so to normalize in
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accordance with (1) above, its constant term must be A = 2-# for
g = 0, since

2
1
- f dz = 2. (3)
ki3
For cey, .4, s€y,.,4, 5€4,,5 We have, respectivel§, [52]
x ==} . o
= 3 LAg - 3 B = 3BT @)

The nermalization (1) entails a mean square value of 1/2 over the
interval (0, 2), which is the same as that for the circular functiqhg®
It is convenient in applications when the orthogonal propertie\s of
the Mathien functions are used. O

The functions of fractionasl order may be normalized i in, llke manner,
but this is postponed till §4.72. .~.

2.22, Relationships. The following are easily, establlslled from

what precedes: N
O3
O arf-2) = cem(n%\&);. (1)
56, -—sem PAY;
m (rta) = ( _aiw m (tm—2), (2)
e TEN | &N i+l
o (m +z)~=’(—1)w :“tz)- (3)
SB“ \

From these relationsHi 33 '[T is seen to be sufficient to give tabular
values of the ordinary, ¥ athieu functions in the interval 0 <l z < §#
for ¢ = 0, Wheng £~ 0, the appropriate values may be derived from
the foregoing hy~aid of (2)-(5) §2.18.

~&
Also '&eznﬂ(r‘f‘ Pm = sey, ,5(rm) == seg, po{drm) = 0. (4)
Whe'g\z“:# i
\M\}(_ 1y 08z, (7 ), (—1)* ceyy 41{2, @}/ cO8 2,

(_l)” Hey, Il(zsq}: (_l}n 382114—‘2(27 Q)/COS z, (5)
are positive,

2 23 Transformation of "4 (a—2g cos 2z)y = 0.
. Substitute = == u(z), & continuous function of z, and we get

du\*d?y |, d’u dy B
(dz) dup T B4 008 2z)y == 0. (1)

LL 1] o]
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Ifu = 2kcosz, g = k2, (1) gives the transformed version of Mathieu’s
equation as 2 ;

)2 Y 4 Y g oty =0, 2

L R ) @

20, Let y = u{z) f(2), w, f being continuous functions of z, then we -
obtain
w2 [at-(f[f)—2g cos z]u = 0. (3)
Take f(z) = e, then f'/f = x, f"}f = «2, so (3) becomes
w4 2t +-[(a+«?)—2g cos R2]u = 0. ~ (4)
The solution of (4) is u == ye—, where y is a solution of Mathicu's
equation. ' \ \))
2.30. Modified Mathieu functions of the first ;.;;;;a of integral
order, ¢ positive. If in (1) § 2.10 we write eiz’f?i- z, the equation

becomes A\

%—(a——% cosh 2z)y =20} } (1)
N

This is the canonical form of the secoqg{xéc}uation found by Mathieu
in his analysis of the elliptical membrape. For the values of @ corre-
sponding fo ce,,(2,9), se,(z,¢) the\fitkt solutions of (1) are derived
by substituting 4z for z in (1)-(41%2.17. Thus we have

Cegnlz,g) = cegyliz,q) =D AR cosh 2rz (@), (2
s =10

Fa

,} @
Ceﬁn+1(z: Q) = ceanxr@%g) = Z_BA%%RI'-EI) COSI1(2T+1)3 (a2n+1}s (3)

kel

Sesn1a(29) 5 Bo8e5,.4(2,9) = 3 BEsinh(2r+1)z (by) (4)
Seamz%?‘)m—" _%.8821&2(1:2: Q) = z Bgﬂ}—_;m sinh(?r—]—Z)z (bz?i,-i-ﬂ)' (5)
'\ =N

Théﬁéjare defined to be modified Mathieu functions of the first kind
»Qf, integral ordert for ¢ > 0. (2}, (5) are periodie in z, with period
N\, whilst (8), (4) are also periodic with period 2uri,
2.31. Changing the sign of 4. Equation (1) § 2.30 then becomes
diy . . -
o (a—|—3q.9gsh 22)y = 0. {1)
This is obtained if z in 1) §'2fi8 ié'repla.ced by iz, or if ({ni4z) is

T‘The use of capital letters to dencta the moditied Mathieu funections is due to
H. Jeffreys [104, P 459]. Tl
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written for z in (1) §2.30. Changing the arguments in either {2)-(5)
§2.18 or in (2)—(5) § 2.30 leads to the following solutions of {1):

Cezn(z’ "' 'Z) = ce‘.ha.(iz! —Q’)

=(ml)"ri(—wl)’A‘aﬁ")cosh2rz (@), (2)
Cegpi1(2, —) = ceapnaaliz, —9)

= (=17 3 (=1 B cosh(r+ 1)z (Byr)s (3)
Segn (2, —q) = —tsey, ,4(iz, —9q) O

= (=1 3 (— 1y AR sinh(@r+ 1)z (an0) (4)
Segealzs —q) = —iSequglit, —g)

= (—1" 3 (— 1y By sinh(zrg@gg;" (Banszh  (5)

’ =0 3

(2), (5) have period =i, while (3), (4) have perjo\(l,Qwi in z. The inter-
change of the coefficients 4, B, and char b;t}ﬁstic numbers @, .,
bans1, i (3), (4) §§2.30, 2.31, should beélgbserved—see remarks in
§ 2.18, The multiplier (—1)" ensures t.hébtr‘when g = 0, the functions
reduce to 4 coshmz, or +sinhmz, &Q:ﬁhe case may be. (2)-(5) may
be regarded as modified Mathi@:ﬁt‘:funct-ions of the first kind for ¢
negative. N
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CALCULATION OF CH ARACTERISTIC NUMBERS
AND COEFFICIENTS
3.10. Recurrence relations for the coefficients. If each series
(1)-(4} §2.17 is substituted in turn in ¥+ (a—2gcos 22)y = 0, and
the coeflicients of cos 27z, ¢os(2r+- 1)z, sin(2r4-1)z, sin{2r 4+ 2}z equated
to zero for r =0, 1, 2., the following recurrence relations are
obtained [52, 88]: .
adg—gd, = 0 \ for g, (% 1))
(e—4)dy—q(d,+24,) = 0t O (1)
(=4 Ay —g(dy, s+ Ay ) — 0 | # A2
{a-- "'_Q)Al_'_QAEI =0 ’."{?1‘\0821&1(2}?)!

o .
{a_'@?"i“l)z]Azr-a-1‘“9(A2r+a+Azr—1} =0 =1 ®
(a_‘l_!"Q)Bl“qu ‘:"-1\0} for se,,, (2, ), (3)
_ [a——(2?‘—1—1)2]32,+1—~q(32,+3+83¥4i) =0)r>1
(a=4)£?3r{iqB = } for sey, ,.(z, q), )
(5‘4?2)Bzf“9(32r=;«§%-82r~2) =0/ rz2

For simplicity the supersgripﬁé 2n, 2n4-1, 3n-12 have been omitted
from the 4 and B, The réspective reeurrence relations for ce,, (2, —¢),
ete., Ce,, (7, q),..., G 0820 —g),... are identical with those above.t To
ensure convergenge Of the series in §§2.17, 2.30 it is necessary that
A,—>0, B g'é}ds'm > a0,

3.11. Calendation of 2 and the 4, B. Tf ¢ is small enough, the
formulae for'a given in §2.151 may be used. In general, however,
@ must_be calcalated asing one of the methods illustrated below,
We\édbpt the normalization of §2.21, thereby entailing coefficients .
Whuch differ from those obtained using the normalization of §2.11

\[52, 88].

We commence with the function ce,(z, 8}, i.e. ¢ = 8, which is well

outside the range of the formulae in Chapter II. First we derive an

infinite continued fraction. From the second formuls, in (1) §3.10,
wo have

(4‘—“)A2+Q(A4":— 24,) = 0. {1

t Note the factor  for Ay 3 Using g or —¢ a¢ the ease may be,
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Writing vy == A,/ Aoy = dyfely thenngey = A /4, Dividing (1} by
A, and making these substitutions, gives

(£—a)y, Fa(ngveT 2 =0, (2)
so vy = lgfll— He -] 3
in the same way from the third formula in {1} § 3.10, with
Vor—g = AgelAgsss v = Ay il
we got (492 —)ey, ot qlog, top_g b 1) = O,
s0 (r = 2) — 1y == (g4 [1— (148 a—qry) ], (-i\)

which may be regarded as an alternative form of recurrence relation,

Substituting r = 2 in (4) yields R\ \J)
—y = (qf16}/[1— (e ~qn)], ~\* (5)
and on inserting this in (3) we get ) e \ e
) RS

g = dg (1 —a— (001 e (6)
Putting 7 = 3 in (4), we obtain a formula fors;, which is now sub-
stituted in (6). Proceeding thus we ultinp@iy get, the infinite con-
tinued fraction \/

g o’ sie0” -}m it r-1)°

=2 & )

1—}a—1—fo— 1 —ge —di—n l—aj4r® —
From the first formula in (1) § 3.1, ’vﬂ = A,/A, = ajg, 30 (7) becomes
—3* G snl” - agnad” (8)

a = s
g0 fa—1—fo—1-jo-

whieh is in effect ahtranscendental equation for a,, Since @, ¢ are
finite, the denomifiator of the general term approaches unity as
7 — o0, whilethé numerator tends to zero. Heace (8} is convergent.
3.12. Qutn\l;iltation of a, for 4 = 8. We commenco by finding an
&ppmxh}ia}e value of a, by trial and error. Neglecting all members
on therhs. of (8) §3.11 except the first, we get
\ ) g == —32/(1—3uy),
50 g = 24-(132)F ~ —95 or +13-5, (1)
Substituting +13-5 in the first three members on the r.h.s. of (8}
§3.11 gives the following: '
ot/ (1) = 0178,
L (L~ —0-178) = —43:6, (2}
11— la+ 43+6) == —0-TT8.
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"The great discrepancy between -+ 13:5 and —0-776 indicates that we
chose the wrong root of (1). Suppose we start with a, == — 10, then
to a first approximation
32 1 0-111
= —ge —— = = 113, 3
%= T35 6251978 )
This is numerically greater than —10, 80 we now use the average,
namely, —10-6, and repeat the calculation. Before doing so, we shall
obtain an estimate of the number of members from (8) §3.11 to give
a reasonable approximation. The general component is N\
[g¥/16r2(r— 1)2] L (a—gqu,,) |, O {4}
- ’ 4?-2 2% .
and as r increases, we see from (4) §3.11 that »,,_, Aécreases, while
in {4) the term 1ty [/4r2 £ 1, provided r is .Inr%::'enough. Taking
r==61In(4)§3.11, and noeglecting qu,, /477, we et
=10 %= (18)/[1-H(10-6/144)1 005, (5)
80 [qusg] /472 < lguy,)id % 36 ~ 0-0028, Weshall presume, that for the
purpose of illustrating the method of exleulation, the accuracy will

be adequate if (8} §3-11 i termingimed at the fifth member on the
r.his. Thus assuming that vy5 aday be neglected, we get [88]

r=235 {gﬁjl(}}‘g(r—-I)g]lf(lfa}‘ifz)
-_-.:i.,rglooy[l+(10-5/100)] = 0:00904 0,

r =4 {1;35)/[1-{\.(N%}*’m;-_o-mmoﬂ = 0:02402 0,
=3 (1/9)/[1-H0d6/36)—002402] - 0-08746 0,
72 1/{1Niﬁ—s;r.ﬁ)-._o-f_>374fs] = 0-63490 4,
T B (06/4) 063400 4] - Go = —10-61326 0. (5)
The t-g'i%i\\*allle of 1y was — 106, g0 (6} differs from this in the fourth
signifteant figure. Taking the averaget gives ¢y = —10-60663 0. If

4\, .

his“is used mstead of - 10:6 and the ealculation repeated, the new
value of g, to sIX significant figures is —10-68067. A more accurate
result may be obtained by using this value of %y, and repeating the
computation with 7 = 7. Tq seven decimal places

@) = —10-60672 92,
It is apposite to remark that & formula of the type (7) § 2.15 could

T This procedure is not always expedient.
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not be used in the present case where ¢ = 8. Kven for g = 0-8 the
accuracy would be low.

3.13. Computation of coefficients for cey(z, 8). From (5) § 3.12,

0 = — 062, so using (4) §3.11, with ¢, —~ —190-6 to demonstrate
the procedure, we obtain
r=5  —ug == (2/25)/[14(10:6/100)—(2 X 0-052/25)]

~ 00726 = ~Aofdg (1)
re=4 vy = {2/16)/[14(10-6/64)—{2x 0-0726/16}] ~

= 0108 = —A4,/A,, '.\\(.2)
P— 3 —uy = (2/9)/[14(10-6/36)— (2 0-108/9)] Ke i

~ 0175 = —dyfAs,  (3)
r=12  —uvy = (2/4)/[1+{10:6/18)—(2x -175/4}] ~.\

= 0-318)> —AJAz. (4)
By (3)§3.11  —v, = 4/[1+{10- 6/4)—2><&318]

1327 = — Ay /A, (5)

Normalizing the function in accordaﬁce wnth the convention of § 2.21,
we have

1= 243 ;:A2+A + A {6)
50 1/42 = 2. {AJ{A\FTH 144) —|—(A5/A (N

¥rom (5}, ~4,=1 ‘32"510, so by (4)
A, £ 1327 X 0-3184, o 0-4224,. (8)

in the same w&y\we find that
& A, = —0-07394,,
AN Ag = 0007984, {9)
\”'\; v Ay = —0-000584,.

Using these numerical values in (7) leads to

1/A% = 39445, so A, — 0-5035, (10)
the positive sign being chosen. A more accurate value may be
obtained by using @, = —10-60672 92, starting at » = 6 and working
to, say, eight decimal places, Then 4, = 0-50376 81, so our approxi-
mate computation errs in the fourth significant figure. We can now
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ecaloulate the other 4, using 44 at (10), and obtain

Ay~ —0-668 — 066791 64,1

Ay~ 0212 0-21197 82,

Ay = —0-037 —-0-03707 27, (11)
Ay~ 0004 0-00400 63,

Ay~ —0-00029 ] —0-00029 09.

Hence to a first approximation the first and periodic solution
(cosine) of

4" (—10°6...-- 106 cos 22}y == 0, M(12)
under the normalization of §2-21, is ¢\
. '\
cegfz, 8) ~= (-804 — 0668 cos 22+ 0212 cos dz— "

—0:07 cos 62-+-0-004 cos 82— 0-0003 8k 102+.... {13)
The graph of (13) is shown in Hig. 3. \
Checking the solution. To check the E;O@f;ion at 2=, «,..., 7w,
we have from the differential equation {12)

y"(nm) = (16108 )y(na). (14)
From (13),

cef(nm, 8) ~ 4% 0-668— 16K 021236 % 6-037—

64 0-004 1100 0-0003 — (-388,  (15)
and NS

Py

(26+6...)ceq(nar, BRI 26-6.,.(0-504-— 0-668 |-0-212-
) —0-037+0:004—0-0003) — 0-391. (16)

‘The resu@j:s’ﬁn (15), (16} agree within 1 per cent., which is sufficient
for pu}«gf(ﬁeé of illustration. The solution may be checked at any
othgrj];}»int, eg. z = lr
N ~Remarks on the coefficients in (13). 'There are two salient features:
\‘&L') beyond a certain term the coefficionts decrease rapidly with
Increase in r, {b) they alternate in sign. {(a) entails the rapid con-
vergence of the series. ¥or 0 < ¢ <= 32, tabular values show that
|44} is the largest coefficient, being 2-% at ¢ = 0. When ¢ = 32
approximately, |4,] takes precedence, e.g. in (13). The relative
values of some of the early coefficients in the series for ces(z, 2),
sex(z, 2), ce;(z, 2) are depicted in Fig. 6,

T The figures in this coltmn ave correct to seven dercimal places [951.
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3.14. Evaluation of a,, for ce,,(z,9), n > 0. Writing (r+1} for r
in (4) §3.11 and multiplying both sides by g/4r%, we get [52]

~ T o+ 1|1 -

e | 1)

Q*/16r3r 1) g2/16(r—|—1)2(r—‘,—2)3 qzjlf__i(r—i—E)z(r—Li)"

T 1w 1R —  1—aja(r42) — 1—afar+3p —7
— B, (2)
10 QA
O\
5e3 N ceg N

05+ g2 ¢5?

| 5{5} \‘ Ai;l

A(S} A(ZZ) A(E} 3(13] 3?3 1 AE? A[;’} A(E?) 1

N
{2

¥ic. 6. Relative magnitndes of the coefficients in thé series for ce,fz, 2), seylz, 2},
ceglz, 2). For g = 2, the coelficient of functipnal vrder is the groatest.

If ¢ = a,,, the characteristic numbg:r.’;,fo“r' ey, (2, q), ¢ = 0, none of
the denominators in the eompongpfié of (2) vanish. Then the C.F.
is convergent, since the denomin'&pfoi‘ of the general terin approaches
unity and the numerator texds to zero as 7 — +-ao.

We shall now derive a,nj‘agltemative terminating C.F. to represent
the Lh.s. of (1). After “Bivision by 4%, the recurrence formula prior
to (4) §3.11 may be\wtitten

A</

vy _ o g
et =1 4?‘2+ Vory ' ®)
o\ a  q¥fler¥(r—1)
N N DA T 30 A - == 2).
O 41t | quyo[4(r—1)* vz @

N
N&V' write {r—1) for = in (4), thereby obtaining a formula for
e QUpn_of4(r —1)2. Substituting thig in the third member on the r.h.s.
of (4), we get '

_Q‘Uzr — 1 __(I_ .
dr? 472

o1 [t a9 TR o)

4961 ¥
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Continuing this process leads to tho terminating C.F.
@y _ | _ ° @16t r—17 ¢ {16(r—1)*r—2) g% /64

@7 T B 1—ajdr—1)P- 1 —afd{r—2)F —-bquyt
{6)

Since v, = af¢ by {1) §3.10, {2) §3.11 may be written
s = —(1—jo+¢*2a). (7}
Substituting from {7} into. (6} gives

. Y, @ .
__F-;:; =1 B, ~ (8
where A\
7 P —1)® g%16(r—1)*(r—2)? gfer 9‘_2 (9)
T l—af4r—1— 1—qfdr—2)? —"_1ia/ii2a

¥or the recurrence relations (1) §3.10 to be qg.Qsi:étent, (2) and (&)
must be equal, so \/

By = 1—a/4r*—Fy) (10)
and for convenience in computation W&f\lﬁa.y write
Gy = 1—aj4r?~ B4 F,. (r =1). (11)

The appropriate value of a egljpé'.eiponds to Gy, = 0. To obtain a,,
@y, fOr cey, Coy,... We use (LWWwith » =1, 2, 3,... initially.

3.15. Evaluation of q;'fdi' ceylz, 8). To start the computation we
have to find o trial valie of a,. By (9) §2.151, @, = 16 when ¢ = 0,
and increases with\miirea.se in g, so let us assume that @ — 20 for
g = 8. In the rhy. of (4) §3.14 take r == 2, substitute for 1qv, from
(7) §3.14, and. We get

LRG0/ futgf2a)] = 1—Ja—F, (r=2). ()
The ﬁxﬁb'two members in (2) §3.14 give
\ 179 1/36
e J f T 1 af36—1 aj6d’ @
Then (1) is approx. 0-166 while (2) is approx., 0-271, so
: Gy = 01660271 ~ —0-108.
Examination of the formulae in §3-14 indicates that ¢y << 20, 80 we
now try @, =19 and obtain 0-297 for (1) and 0-26 for (2), i.e.
Gy =~ 4-0-037. Thus the value of @, lies between 19 and 20. By
linear interpolation (see Fig. 7a4), @y ~ 19+2 = 19-26. Using this
value in (1), (2} yields 0-261, 0-263 respectively, so ¢y ~ —0-002,
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A gecond linear interpolation gix es @, ~ 19-253. If now, with this
value of a,, we take r = 7 in (2), (9) §3.14 and repeat the computa-
tion, the value of a, correct to seven decimal places is found to be
19-25270 51,

(1) 02073 (4) 0-3t
(2016
0-25¢
O
02T OV
-

0-15

19 Values of & 20 ¢ \
(B) > 0263 (2)
(1)0-262; 0262
(2) 0261 ffisr?ég 0261 (1)
192 S 196

b (¢9 ']‘x (‘A m). Dlustrating Huear interpulation.
A\

3.16. Evakti&t’mn of coefficients for ce,(z, 8). By the first recur-
rence reia.t\{Qn'm (1) §3.10
A = vp = Ayl Ay = aylg = 19:25271/8 = 2-4068. (1)

\
P\}n'(i')§3 14,

vy = AyfA, = —4(1—ja—q*{2a}{q
— —(1- 4813241-6624)2
— 1-0754. @)

3) § 2.14 may be expressed in the form

Lacary— L =2, )

i ==
ar
q Uy
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80 v, = Agfd, = 2-4066—2—0-9298 (r = 2)
= —0-5232, (4)
vg = Agfds = 2-4066—4-511-0113 (r = 3)
= —0-1821, _ (5)
vg = AypfAs = 2:4066—84 54915 (r = 4)
= —0-1019.% (6)

As the computation proeeeds, it becomes evident that #y, 18 the small
difference between two comparatively large numbers. For reasonable
aceuracy, therefore, it is imperative to use more deecimal places than
we have had hitherto. However, our purpose is merely to Wlustrate
the method of computation, not to attain high a,ccumcy;\éts'we shall
now evaluate the coefficionts in accordance with the(xiormalization
of §2.21. Following the routine in §3.13, we find (th335t

Ay = 240664, O
4, = 25894, \%
Ag = —1-3564g50 (7)

Ay = 024745\

Ay = —0-02454,,
Then by §2.21 ™

1143 = 24 (A A+ (45H P (g ) 1.

N\ F(Ayo/A)+... = 16-392, (8)
s LT 4= 0947, (9)
We now caleulate, { :
N 4, - 0505,
o> A, = 0839,
o Ag = —0-335, (10)
O° Ag = 0-061,
O 439 = —0:00608.

Thio signs of the coefficients are in
Y

tHe end of §3.53, Inserting these

solution of

accordance with the remarks at
coefticients in (1) §2.17, the first

y”+(19-2527...—-1600322)y:0, (11)
to a first approximation, is the Periodic function
Cey(?, 8) = 0-247+-0-595 cos 2 +- 0639 cos 47—
—0-335 ¢08 62+ 0-061 cog 82—0-0061 cos 10z+4-.... (12)

. 1 The value of v, correct to tive decimal places is 0-0997],
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Check on the solution. By (14) §3.13, we have
y'{nm) ~ (16—19-253)y(nm) = — 3-253y(nm). (13)
Now cey(nw,8) = —3-85, and —3-253 cey(nn, 8) = —3'9, so the
agreement is of the order 1 per cent. To better this, it would be
necessary to give the values of the coefficients to more than three
decimal places.

3.20. Characteristic numbers and coefficients for ce,, .,
864, 11, 84, 1o. These may be calculated in a similar way to those for
ce,,. tsing appropriate formulae derived from (2)-(4) §3.10.

. .
For cey,,y, with vy, = AZED/AZADY,

= {a—1-q)fg, - \ (1)
— Vg = [@f(2r+1)7}[1—a/(2r+ 1P+ qug,, /(2r+1)7] (?‘ £8). (@

For sey, .3, with v,y = BELIV/BIYY, ~.T
vy = ([a—1-+4g)fg, N (3)
— ¥,y = as at (2) above. (4)

For se,,,5, With v, — BRI/ BEm+D, O3

— (a—1)jg, 20O (5)
Vg = (q/4")[[1~aftr? L gy /4r?] (r = 3). (6)

3.21. Convergence of serles“fdi‘ ce,(z, q), se,(z,¢). The third
relation at (1) §3.10 is a ]meaf difference equation. Writing (r4+1)
for r, we get

[tl 4{*“1‘3)?/42”2 (AgpigtAg) = 0. 1
Dividing throughouf iﬁz Ay, and putting vy, = 4, /4, gives
[gE"T"“(""‘f—I) 122 —q(0a 2 v, t1) = 0, (2)
) 1 : '
80 PR il L e )

2r

71 . o .
Then 152',::2\-1—— — —oo monotonically as » - o0, and it is evident
Vor

that: 3,'2, cannot; (1) oscillate boundedly, (2) tend to a unique finife
l}mf other than zero. Hence either #,, — 0 or |y, | > 0. Now for
convergence of the series representing ce,,(z,q), 4y, —> 0 as r - f o0,
80 v,, must also tend to zero. Consequently, as ¥ - +co, one solution
of (1) tends to zero, and the other to infinity. In the present instance
the latter solution is inadmissible. Thus in (2), when r ia large
enough, ¥y, <€ 1, & <€ 4(r+-1)%, and with a, ¢ finite

iworl ~ qf4(r+1¥2 >0 asr— +foo: (4)
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If 2 is real, |eos2rz| <1, so it follows by the ‘M’ test that the
series for ce,, (2,9} is absolutely and uniformly convergent. More-
over, it represents a continuous funection for all z real.

In like manner the series for gy 11{2, ), s€,(2,¢) may be proved
to have the above properties. Henee all ordinary Mathicu functions
are continwous for z real, and the series may be differentiated or
integrated term by term provided the resulting series are uniformly
convergent. This can be proved to be true. These conclusions apply
to the series for ¢ <7 0.

"

3.22, Convergence of series for celz, 4), seiz, q). e pth
derivative of ce,,(z, q) is O\

d® = (— 1) cos 272 } @ even
——lee,,(2.9)] = 3 (274, A ’
dzJ’[ (% 4] f%‘.( s {(—1)}#+Dsin 272 p odd.

Thus the ratio of the coefficients of the (r-- J)Lfg 4nd rth terms is

(1}

U ’f—:']. p. ' .
el - (2] o] = (L3Pl | &
Then by (4) §3.91, '
tysfty] > 0@k - o0, (3)

80 all derivatives of ce, (2, q),g?;'é ‘absolutely and uniformiy conver-
gent for z real. The same cjéﬁéiusion may be reached in connexion
with cey, (2, ¢}, sc, {2, q)-by similar analysis. This, and proof of the
validity of t-erm~by-f:@1§n integration, are loft as cxercises for the
reader. A

3.23. Converigence of series for Ce, (2, 9), Se,(z, ¢), and deriva-

tives, The Aoties are merely those for e, (2, q), se,(z q) with =
written fc»:\x{%." Hence, by (2) §2.30 and (4) §3.21,

~,§~' Ua1| ., q  cosh(Zr42) 1)
o U 4(r4+1)*  cosh 2rz (

M{nf§ 3.21 we proved that the series for ee,,(z,9) is absolutely and

\u'niformly convergent for all z real. Hence the series for Ce;n{z, q)
conforms to this when 2 iy imaginary, i.e. B(z) = 0. Now when
B(z) # 0, from (1),

Ura

~ g (LT 5 0 g gy +ao (2)

provided R(z) is finite. Hence the serics for Cey, (2, q) is abseolutely
convergent under this condition, By applying the ‘M test i may
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be proved uniformly convergent. Hence the series is absolutely and
uniformly convergent in any finite region of the z-plane or in any
closed interval of z real. The same result may be reached for the
three remaining funetions, and for the pth derivatives of all four
functions (see §3.22}.

3.24. Characteristic curves for ce,(z, 1), se,(z, +q}, ¢ real.
There are tabular values of a,, a,...., a5 and by, b,,..., b, in the range
g = 0-40, given in Appendix 2 [95]. When these are plotted using
cartesian coordinates, the chart of Fig. 84 is obtained [88]. Itis
symmetrical about the e-axis, a,,, by, ., the characteristic gurves
for ce,,, sey, ,, respectively, are symmetrical about this'a,\z'(ﬁ-,\but
@y 110 Bonyy cOrTesponding to ce,, . 8¢y, ., are asymmetrical’ Never-
theless the symmetry of the diagram is maintained, siricé the curves
for the functions of odd order, i.e. ag,,q, g4 aré dutually sym-
metrical, e.g. @q, b;. When ¢ is positive and largeewough, the curves
@y, Bany approach and are mutually asymptotic, but have no
independent linear asymptote, A similar rgﬁé&rk pertains toa,,, b,, ;.
When g is negative and large enough, aghs @, 4y, and by 1y ~ 89y, 40
It should be noted that of the correspondmg pairs of functions one
has period =, the other period 277.,;,' .

Excepting the curve g, whgch Is tangential to the ¢-axis at the
origin in Fig. 84,8, ali curyes intersect this axis twice, one value of
q being positive, the Otht,r»n\ag&twe Thus each characteristic has two
real zeros in¢. For tln\{unctlom of even order ce,,, se,, .,, the zeros
are equal but oppogite. The zeros of cey,,, are equal but opposite
to those of $€2m 21 '\'.Si'nce Mathieu’s equation has only one solution of
type ce,, or s/l £ 0), two characteristic curves cannot intersect.

Approana,\ﬁe values of ¢ = 0 for which a is zero are given in
Table 1.8

O TABLE 1. Zeros in ¢ = 0 of a,, b,

\ ‘Churacteristic |
number a, b, ), By g, by ‘ Gy Bppigs 2 32 3

Value of ¢ I o | oss 78L | 2128 | 0-86(2m4 112
I : 7 i

2 3, the ¢ interval between the zeros of dy, and g, i3 6-BB{m -1}

Far m

1 This formula was obtained by taking several terms of {1) § 11.44, putting e = 0
and selving for q.
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3.25. Continuity of the characteristic numbers as functions
of¢. By considering successive convergents, it may be demonstrated

40

36
35

3o

Values of &
= A

—
oo

i

Y

)

«
/

£

2 a(f fe)
T,
of integral order. Tho characteristic
nto regions of stability and inatability. Tho
the odd-order eurves are asymmetrical about
gram is symmetrical about the g-nxis.

F16. 8 (4), Stability chart for Mathieu funciions
eurves @y, by, ay, by,... divide tha plans i
even-order eurves ure syrametrical, but

the ¢-axis. Novertheless the dia,

that the continued fractions for computing the o (see §§3.11, 3.14,
3.15) may be expressed as the quotient of two integral functions.
The denominator of this quotient cannot vanish

f the value of g is
& characteristic number for 5, periodic Mathion function of integral
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order. Hence the continued fraction is continuous for any pair of
values (a,q) which satisfy the relationship regarded as a trans-
cendental equation for a. It follows, therefore, that a,, b,, the
characteristic numbers for ce,, se,,, are continuoust functions of ¢.
Since the transcendental equations for the @ are derived primarily

a;ce)o=-37

/4////////////

g

3
3
¢

i
\\\\<\\0:\‘\“\0 z/
ﬁ;» G=i§§ 317 ‘ !5%//
\;“ =1 //}7 o oez) zr;o
8 —4 Y 6/7/7/8 Valuesof o
\5/ \ "Q// /) / /// /?{(cm)./éé—%;r
\\ ', N -4 b (se).#=0
K\ N
\‘? N ///////// 0 7
Fig. 8 {m). [liuqt‘m\t-iu;,r variation in the parmweter o in stable and unstable

regions ¢ = O anif =0 B agy, by, 810 rutunlly asymptotic and > —0 a8 § - o=,

Gy By s Da Oy B7E mutually asymptotic and— —w as g— —= (see § 12.30).

from th&-écun-encc relations, the coefficients 4,,, B, are continuoust
functions of ¢ (see Fig. 9).
.'*;3?26. Additional comments on normalization. We are now
wble to, comment upon the normalization of §2.11, where the coeffi-
cient of cosmz in ce, (2,¢), and that of sinmz in se,(z,¢) is unity for
all values of g. We shall show that under this convention the
remaining coefficients are infinite for certain values of ¢ # 0 (22}
Consider ce,(z, ¢) whose characteristic number is a,. Then (1) §5.10

gives glag = Aof4,. (1)

t And single-valued,
4061 [t}
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Now by §3.24, @, = 0 for g, ~ +21-28, so A,/4, is then infinite,
and since 4, =1, 4, = c0. Also with ¢, = 0 in the second formula
in (1) §3.10 we have
2q4,+44, 144, = 6, (2)
and since 4, =00, 4, =1, ¢ 3£ 0, we get 4, = —o0, and so on,
Thus when g, =~ +21-28, @, = 0, and all the coeflicients excent A4,
become infinite.
A similar conclusion may be reached for the coefficients of any
Mathieu function of integral order, excepting ce,, ce,, soy, se,. We

. shall now examine these singular cases. For ceg, (1) §3.10 giv&x‘

AgA, == gla, .\:\ {3
Since A, = 1 for all ¢, and ¢, never vanishes in ¢ > 0 A} is always
finite. It is shown in §12.30 that ey~ —2g¢a§, q—+ 4o, so
Agfdy—> —} as ¢ . By employing the’gdecond recurrence
formula for ce,, we can demonstrate that 4., {g;}nitc, and so on.

For ce,, (2) §3.10 gives O

A4y = g, —120), ()
and since 4; =1 for all ¢, while by@ppendix 2 (¢,—1—¢) £ ¢ in
¢ >0, 4, cannot hecome infinite}” Since a, ~ —2¢ as ¢— +o0,
Ayfd; > —%. The functiong :?;séi, se, are amenable to similar
treatment,. o

Apart from the above. exteptions, it appears—although we have

"~ not given a general :p{‘éof-—that for functions of order 2n, 2n--1

there are n valueg©of’g > 0, and an equal number for g < 0, for
which all coeffigients, save that of the same order as the function,
hecome infinite’; The positive and negative g arc equal numerically.
We see, therefore, that the convention of §2.11 is inadmissible for
general PFposes, although it is sometimes useful when g is small,
anc}zgg?ies for ce,,, se,, are given in ascending powersof ¢ (§2.13 ¢t seq.),
Aecordingly we shall now enumerate the advantages of the conven-

\”‘f;mn of §2.21, which is based upon the orthogonal properties of the

Mathieu functions.

3.27, Advantages of the normalization of § 2.21.

1°. By (2), (4) §2.21, none of the coefficients is infinite for any 4.

2°, When ¢ — 0, it is shown in §3.32 that the coefficient of: the
same order as the function tends to unity,T while the remainder

¥ r = | ) H
tend to zero.] Hence ce,(z, q) = cosmz, se,.(z,9) = sinmz, and these
‘+i_' Excopt AE".H fur veq which as shown in § 2,21 s 2-% Ty this seation m ... 0
3 Az stated jn § 3,32, this is independent of the normalization S
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are the formal solutions of y*+ay = 0, & = m?, which is Mathieu’s
equation with ¢ = 0. The vanishing of the coefficients entails
Ay fAg, Agnialdy, ete., being infinite, but this is inconsequential.
30 The integrals at (1) §2.21 are independent of g (real).
4°. Tho mean square value of the function for the interval (0-2=)
iz the same as that of cosmsz, sin mz, i.e. 1

3.30. Properties of the 4, Bunder the normalization of § 2.21,
Referring to (12) §3.16, we see that (a) beyond a certain term the

0 N
03
06
04

02

‘Q

N

Fia'o, “Tliustrating AP,..., A as single-valued continuous functions of ¢ = 0.
\"\; When g =0, dgm q, A, -1, A% ¢, Ag£ ¢% and so on.

A decreasc rapidly in numerical value with increase in 7, (b) after
the term in cos 4z, they alternate in sign, (¢} |4, is the largest, but
this depends upon the value of ¢, e.g. [4,] = [4,] when g = 9. The
values of the 4, B vary with ¢, and by §3.25 the variation is con-
tinuous in g 3> 0. This is illustrated in Fig. 9 by data from [52, 95].
In the range 0 < ¢ << 40, tabular data show that A%, AP, AW, A
B®, B, B each have one zero in ¢. B® has & zero in g >> 40.
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1°. Coefficients in series for cey, ceq, 86y, 86, For ceg, (1) §3.10 gives

Ay/Aq = yfg. (1)

From Fig, 8, a, is negative in ¢ > 0, so the r.h.s. of (1} is negative

also. By §3.27, 4,, A, are finite, so neither has a zero in ¢ - 0.
From the first two relations in (1) §3.10, we get

Ay A, = [{ay—4)/q]—2g/a,. (2)
Thus 4,/4, will not vanish in ¢ > 0 provided a,(a,—4) > 2¢°
Tabular values show that A,/4, does not vanish in 0 < ¢ < 1600
[62). Beyond this range we take ay ~ —2(¢—g?) from (7) § 12,30 and
find that the above inequality is satisfied. Hence 4, has no\zero in
g > 0. Similarly it may be shown that the remaining 4 haveno zeros
in ¢ > 0. This conclusion is valid for the cocfficients irdthe series for
cey, 86y, 88y, It is confirmed up ta ¢ = 1600 by tabular\values in [52].
2. Real zeros of AR, ARV, BEWY, BEWn ¢ > 0, n > 0.
For ceg,,, (1) §3.10 gives \/
Agfdg = ayfg. (1)
When 7 > 0, a,, vanishes once in ¢ ;-'\f):}see Fig. 8), and since by
$3.27 4,1s finite, and by (1) above it Basaio zero ing > 0, 4, == 0 when
ay, = 0. With g large enough, by (7)§ 12.30 a,, ~ —2g-+(8n--2)¢,
80 Ay/dq—~ —2 as ¢ -» -+0, and M, never vanishes.in ¢ > 0. From
(1) §3.10 we obtain N
Az 25— (2074 day, —ab, ) jqa,,. (2)
Then at the fwo inte\r'g?:s}t-ions of 2¢*--4u,,—a2,, and the curve a,,
(¢ > 0), we got. | A A, = 0, (3)

Hence 4, vapiéhés twice in ¢ > 0. Proceeding thus we find that Ag
vanishes thylee in ¢ > 0, and 80 on. The coefficients for other fune-
tions n@ffb’e treated in a similar way.
The 2eros of some of the 4 in ce, are given in Table 2. The second
zere0f AP, the second and third of A{, and all four of AP lie beyond
\”“g' == 1600. Tabular data indicate that the coefficient of equal order
with the function has the smailest zero in q.

TaBLE 2
j First zero in
Coeflicient | g (approw.)
Agh 21-28
g 1736
42 1352-8
i >1600

i
Aa




3.301 NUMBERS AND COEFFICIENTS 45

Although we have not given a general proof, under the norrnaliza-
tion of §2.21 it appears that if » > 0, AZW, A@wiD, BRI BErLY
each has r real zeros in ¢ > 0. These correspond to the infinities
under the normalization of §2.11 {(see § 3.26). It may be shown that

when r = 0 none of the above coefficients has a zevo in ¢ = 0.

3.31. Numerical check on § 3.30. The values of ¢ at the inter-
gections of the straight lines or curves for a null numerator, e.g. as
in 2° §3.50, where 2¢2-+4da,,—al, = 0, and the appropriate charac-
teristic curves a,, b,, (Fig. 8), were calculated for several functions
and are given in Table 3. They are in satisfactory agreement witih
the zeros in ¢ of the coefficients A, B computed by 1nterpo]at10n
from tabular values. The limited range of ¢ in the tables pe;;mltted
checking of the firsé zeros only.

~ \
N

TapLE 3. Approximate zeros in 0 < g <5 40 of {43;“), BgM

A;ﬂﬂ Jor (:e‘_nv[‘.{,?l -_ B for Semiz; q

L3

w2 | 8] 4| 5| 3 [av 5| 8

gy |e128| 156 ] 174 20-71>4Q~:\3’7‘-3 31-4 | 318

A, AP, B, BP have ng Zueos in g = 0.
.\

3.32. Behaviour of coefficient§ s ¢~»0. From (1) § 3.10 for

cey(z, q) 40‘;_:;,‘42%,4, (1)
and since A, is finite, AP{”ﬁ\O as g > 0, Also
(By—4)4, = (24 +4,). (2)
Substituting for c},\'ﬁ'ehl (5)§2.151, and for 4, from (1} into (2), gives
7 L+ 0@)s = dg'dutad, (3)
so when q,‘{s\small
Ay = —fgdy >0 asg— 0. (4)
Agau],\bv (1) §3.10 with r = 2,
v (a,—18)4, = q{dg+ 4y, (6)
and by (5) §2.151 and (4) above
BAL—1240(gY)] = A+ 4, (6)

Thus when ¢ — 0, 4, — 9, and so on for the other coefficients. Now
using (2) §2.21, it follows from above that

AP ->1 asg—>0. _ (7)
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In a similar way it may be demonustrated that in ()-(4) §2.17,
A8 51, B 1 when ¢ — 0, while all the other A, B tend to zero.
The latter result depends upon the recurrence relations, and is
independent of the normalization.

3.33. Form of coefficients when ¢ is small, By solving
Mathicu’s equation as shown in §2.13 et seq. or alternatively, the
following results may he derived [215]:

9

J 2, or(3r44), ).
AP = iyt O 5 AV S PR}

)\ (1)
AR = (—1)’[——1~— T LALE S e oy PN
" RO VTR [P AL 1 DL
BOE|ap; @)
ap = [e- 001 B8 oy ap, S (3)
3 216 Y
9 (4774292 ¥ 247)

2 1y — S gr o T saaler r r 2.
AR = (1) [ﬂ(wg)!tf 18(r+2);1ﬁ+Ww+0“ +4)]A‘g’: (4)
21k — (_.Ir[._,_l___;r__.__,,f{%: el 1_,_ rH2 L

it ) M rr1)! )P 4‘4(r_1)1(r+2)13' ‘

2 N —|—O(£r"'3)]B{1U} (5)
AN

200 - ) (rg-23

B('Z)' = {-1¥y]| _. g __i____) g Tappds | i)

prre = {—1) ?”W 20~ ey (r—]—S)It +OUrH) B2, (8)
Eitll.?r by obF-e,i\‘r@jn’g formulae similar to (1 }~(6) or by using recurrence
relations, a}l;@,,.t-he expansions of a in terms of 4. it may be deduced
t.]lat- if_:’gi?in&]_l enough, AJ0, 4@n i poew L1y BEL2 are O(gn-7) or
U(‘fr_.f' ccording as 7 v, To illustrate this point, we find lor
C(.""‘g’ﬂ) that when ¢ is small enough, the recurrence relations give

) A® ~ L oae 5~ 1
\\ VS g AP, AP~ 16745, AP ~1,
- 1
R T 1 6
AP ~ 24?9&45 »oand A4S~ T;ﬁiqu‘g'dJ'
Since zo[Ag;)ﬂjz =1, we obtain
<
AP~ g -——(IB 9%+ Olg?) 7
s agogt U @)



3.33]1 NUMBERS AND COEFFICIENTS 47

From [ 28] we get the general formulae (» = 0, = 0),

!

) o~ Y : i B
Am:-ﬂr ( l) '?‘I(?R—I—?’)Is H ( )

. O L k) 1P
d;nd 1?_,1 o = W_"’T'}! i, (9)

The results in (7) agree with those obtained from (8), (9). When g is
not too large, we infer from (8) that the A of order greater than m
are alternately negative and positive, while (9) shows that ali those
of order less than m are positive. A is positive. These statements
arc borne out by tabular values, from which they are seen ta\be

invalid when g exceeds a certain value [95]. ¢ \\\
'\
3.34. Behaviour of coefficients as ¢ — -foo. We uae‘the recur-
rence relations in §3.10, and & ~ — 7g from § 12,30, 1‘hen for ce,,,

ady—qd, = N (1)
80 Ay fdy—~ —2 as g —|—Q (2)
Also {a—4)y4d,—q(d,+24 u}\ U (3)

so substituting for a, 4,, ¢
—44,+A,424, =0, gwnig 4/A0 -2 as qg—> foo (4)
In general we find that N
AEVAED A 172 asg— +oo. (5)

By (2) §2.21 ii follows tha?ﬁ for n = 0, all the A% = 0 ag ¢ - +0,
in a manner cnmp&tfﬁle\theremth. Similar analysis yields the same
conclusion for the 4%+, B The results corresponding to (5) are,
for n = 0, PN
A&%}PA; - (—=1)y(2r--1); By o/ By — (1)
N\ By o/ By =~ (=1 (r+1). (6)

?\’umencal illustration. When g = 1600, from [52], A,/Aq ~ —1-95
forl wn, and —1.75 for ce,, as against —2 as ¢— +oo. Using
aNs —2g+(8n--2)¢t from §12.30 in the recurrence relations, we
obtain —1-95, —1-75 for ¢ == 1600. For ce,, A4/4, ~ —2-83, and
with the better asymptotic form of ¢ we get —2-85. As g — -0,
the ratio - —3. The accuracy of the values calculated in the above
way decreases with increase in the order of the function.

AR s a function of g. By § 3.33 it is O(¢”) in the neighbourhood
of g = 0, with p 2= 0; by § 3.30 it has r real zeros in ¢ = 0; and from
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above it tends to zero as ¢ > Jo0. Thus we surmise that in genecal
Ag™ is an alternating non-periodic function of ¢ which ultimately
tends to zero asymptotically. The same conclusion pertains to the
other coefficients.

3.35. Behaviour of coefficients as » - -+co0. When « is very
large, positive, and much greater than ¢, a,, ~ 4n%. From (1) §3.10
Agd; = gla ~gidn® > 0 as n - +oo. (1)

Hence 4, 0. From (1) §3.10
A4, = qfla—4) >0 asn-> +o. RN
Hence 4, - 0. In like manner it can be shown that¢allythe 4 -> 0
except 4% which tends to unity. The same con}:lu?;ion applies to
the cocfficients for the other functions of integral on fractional order.

3.40. Solution of y"+(a—2qcos 22)y =/0,\When q is negative
imaginary. Inthe problem of eddy currént effects in § 17.10, g takes
the form —is, s being real and posjti\kz{ In numerical work it is
preferable to work with ¢ = -Lig, and then obtain the solution for
7 = —is by writing (}=—2z) for #_The value of g is real or complex
according o conditions. qufﬁa moderate, the serics for g, b, in
§ 2.151 are convergent, and.dbay be used for computation. The series
for ay,, by, proceed in peWers of ¢2, while those for @opi1r Dapoq PIO-
ceed in powers of g/ Hence a,,, by, are real, but a,, ., b,,., are
complex. When $33,, s, depending upon » and the function,

a’zn,
by, aTe complex. \In the sections following, ihe method of calculating
eharacteris@ic: numbers and coefficients is exemplified.
AN
3.41.,Calculation of a, and coefficients in the series for
ceu(&\'%oilﬁi). We take 5 == 0-16 in (1) §2.151, so with q =18
N\
Q) g = 1.92—}- 7 s 29 LR 1
NS °7 3% T138” Tagpa” T ' (1)
= 0-0128-+0-00003 584+ 0-062]1
== 001283 6 to six decimal places. (2}
By (1) §3.10,

Uy = dyfAy = ayfis = —0-01283 6:/0-16
~ —0-08022 5i,
50 Ay = --0-08022 5i4,, (3)
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From (2) §3.11,

vy = {@p—4—24/2))/q (#)
— [0-01283 6—4-(0-324/0-08022 5i)}/0-16i
— —0-01011 2. (5)
Thus
A4, = —0-01011 244y = —0-01011 2 0-08022 54,
— _0-00081 14,. (6)
Hence

ceg(z, +0-168) = A [1—0:0802: cos 22— 0-0008 cos 4z+...],. ()
and by writing (3w —¢) for z on the r.h.s. of {7),1 we get \‘\
ceq(z, —0-167) ~ Ag[1+-0-0802i cos 2z—0- 0008 cos 4z 0] (8)

An approximate check on the 4 may be obtmned ‘by using the
formula (6) §2.150, namely, w\\

ceglz, q) = 1-—(% q"'—i— )cos2z+(32g -§1152g4+ )cosalz—
1 N
(1152q - )c036z+(?3728q — )cosSz+.... {9)
vy = A‘;/A4 may be calculated by aid of (4) §3.11 expressed in the

form — (2o > 2, (10)

but the numbers mvolved\are such that unless each is given to more
decimal places than gves Jave nsed above, a large error will occur.
It is prefera.ble to Wr}b {(10) in the form

o :V\ ;T gg = gfla—4rt—gvy), (11)
and as an app}bmmatlon to assumne that v,, vanishes to an adequate
number \f\declmal places. Then with r = 3 in (11), we get

' s 0-16/(0-0128—36) — —0-00444 61, (12)
£\
BN/ .
4, = —0-00444 6id, = 0:00444 6i X 0-00081 14,,
— 0-00000 36idq. (13)

To the same number of decimal places this value is obtained from
(9), i.e. —¢3{1152, with ¢ = 0- 16i. The value of 4, in (7) is given
at (13), but in (8) its sign will be negative.

+ When the A are either real or imaginary, but not complex, (8) is obtained by

changing the sign of i in (7).
481 H



50 CALCULATION OF CHARACTERISTIC [Cunp. 111
3.42. a, and the 4 in the series for ce,(z, —0-16:). From (5)
§ 2.151 we have, with ¢ = s,

5, 763 , 1002401 , |
B TR T T Rl T TR T )

== 4—0:01088 667 — 000003 617 —0-0521

== 398929 7. (@)
Proceeding ag in §3.41, we find that
ceofz, 0-16¢) = A[1—25i cos 22—0-328 cos 42-- 0001641 cos g ... ]

\ (3)

and \' '\,,'\
ceylz, —0-168) = A [14- 954 cos 22— 0-328 cos 4z~ 0-00164¢ cos 6:-|-...].
"\ 3 (4)

When ¢ is moderate and real, |45,] is the la,rge.%t coefficient in the
series for cey,(z,¢). This is true if g is mofévate but imaginary, as
is exemplified by the 4 in (4). 7\

3.43. Calculation of a, and the 4~'i} cey(z, —4-82), Here ¢ —= 48,
which is too large for (1) §3.41 to givé an adequately accurate result.
Instead of using this formula, w’e ‘vbtain an approximation to ¢, by
means of two asymptotic formilae. The first is {1) §11.44, and for
brevity we designate the rhis. by L,.. The second is in reference [58],
and takes the form L

pls 2 4hy é 1
bm+1_'a’m ~ | (;T)zgé(m‘§)e_4q&(1+clq‘}+c2gnl_}—“’) = A'Hl" (1)

~ where €= .—‘({:225, —0-849, —1-765, —2-995 correspond respectively
to m = 0512, 3, and the value of i¢] is large enough for terms
involvitgc,, ¢,,... to be neglected. In reference [87] it is explained
thaitz{}—f,_-,&m 18 a suitable approximation to g for 'starting a com-
Putation, provided s i large enough. We take ¢ = is, ¢ real and
\”“?aéitive, and finally write (37—2) for z in the cey(z, 4-8i) series,
thereby obtfaining that for Ceq(z, —4-8i). In the formulae for I A

X o ] ney San
WO fake f-i == etivi 18 — yalmi and g0 on. Values for m == 0 are
given in Table 4 [571.

We commence the computation by assuming that the tabular

value of a, for s = 4.8 is an adequate approximation, and apply the
recurrence relation (4) §3.11 in the form

Yorp = 9’;"{‘1“4"2“‘91’%) .(3‘f = 2). (2)
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TABLE 4

kS Te Ay e 1\ —a,
145 | 1-52624 th— 1-38481 64 156 - (GRS 1-80624 0 - 104497 6f
3-2 | 226885 6— FRIZE 85 | -02WAR L2132 241125 6 306006 Ri
48 | 283878 §— 6-48850 8 | +0-0306 401528, 282008 8 — 636400 B/
6-1° 3-31939 2— 0-21146 8 | 007016 0-02744i | 3-28431 2— 022518 8/
80 | 374247 21199063 6i | --0-03416 8—0-01775 67 i 3-T2538 8— 11-98165 &i
96 | 412486 0— 14-80072 0 | +0-00856 0—C-01960 8/ | 412158 0 - 14-79981 8¢
11-2 | 447642 8—17-65437 2 — 0-00432 4 -0-01071 27 | 4-47859 0— 1768472 8}
12:8 | 4:80360 0 20-53316 8{ | —0-00574 4—0-00336 8 | 4-80647 2—20-53148 4i
144 | 511084 8—23-42672 0i | —0-00303 2+0-00033 07 | 511281 4. 23-42688 5/
16-0 | 540142 4_26-33682 0 | —0-00178 6--0-D0148 81 1| 5-40231 4 —26-33736 ¥

To illustrate the procedure, high aceuracy is waived: we take Q,G\_ 0,
and ¢, = 2-821—6-565 in (2), thereby obtaining O
4:8if(2:821—6:-565i—36) = —4-8i/(33-170:% B65i)
— (002764 0-139). p .:\
Applying (2} with r = 2, we have .
4-8i/[2:821 —6-565— 1644 s\(0\0476+0 1394)]
—4-8i[(13-854-6-4337) AN
—-(0-132-}0-2858). %) )

L

(3

Vg

N

Al
B0y = 2g/(a—4—qva) s

0-6/[2-821 —6:5651 -4+ 4-8i(0-1324-0-2851)
—9+63[(264T-5-9314)
— (i 3&0-5885} (6)

‘We can now caJoulatc the coefficients 4,, 4,,... in terms of A, but
before doing, s\a, *we shall investigate the accuracy of the assumed
value of (,.“\’

3.44.5% {Closer approximations to @, and the ». The first recur-
rence\relatlon in {1) §3.10 may be written

™ L =qguy—a, =0 (1)
Thus if a, and », are calculated very accurately, the Lhs. of (1)
should be correspondingly small. Moreover, the magnitude of L will
be an index of the error incurred due to the assumed value of g, and
in taking ve = 0. The numerical results in §3-43 are mot accurate
enough to permit the calculation of L. However, we can show the
method of obtaining a closer approximation to @, and the v sym-
bolically.
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Since the v are functions of a4, by (1) we have, with ¢ constant,

Liag) = qvy—tty (2)
Then if 8, is small enough, by Taylor’s theorem
oL ;
L{ag+-5ag) ~ Lag)+-a, a(%)' (3)
o
We presume that L(a,+8a,) == 0, so we have Newton’s well-known
spproximation aLia
g = Liay / [_7;;1)] (4)
Our next step is to derive an expression for —0L{ap)/éay W terms
of vy, vy, 9,,.... Then from (2) <\ \
oL _ | _ g W (5)
~ a, dm, A%
Also, by (2)§3.11, vy = 2¢/(ag—4—quv,), '.g\* (6)
dvy, o —2 9 ’
80 gaTu ( _4 q’b ) ( QV‘ 9"”2): (7)
\
and, therefore, &gz l@”[ L Q?»g}] (8)
aao o’ 2oy
Again, by (2)§3.43, v, = Q/‘(%*lﬁ 04}, (9)
. 5((11?21 . 9(qv,)
* ook e Al a0
Substituting the rh.&0f (10) into that of (8) yields
) gl s 20 |
o dy e { oty ” ()
In general\:"" _ Ve |1 %) ,r>1 (12)
da, e g

O
80 bv'}hsertmg the expression for —&{qu,)/da, in (11), and repeating
tk@ Trocess, we are led to

\ / . ?%Zw—? = v 1+oiof i -ofel ol 1] (13)
Accordingly, by (5), (13)

oL '

~a, = 1+3{v+vgef +e§odel 1. ] (14)

=1+5 Az[A§+A§+A§+...]. (15)
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Hence 2t
oL @ .
2 =i S =2 [ehmndn (o)
day, -
0
We calculate L from (2) using adequately accurate values of v, a,.
Let the result be L = z;+2y, Now caleculate —oL/éa, from (14)
using the ». let —oL/éa, = x,+iy,. Then from (4)
day = {ag+igg,) /() +iy) = Xp-igyy, (17)
50 @g+8aty == (382098 8+ 2,)—(6-56400 8—y,)i, {18)
which is a eloser approximation to the characteristic number than
that in §3.43. This new value of g, is used to recalculate the v)\as
in §3.43. The process may be repeated, but the number of dee\mal
places required for increasging accuracy will inerease at eash repeti-
tion, owing to decrease in the real and imaginary parts of L.

3.45. The series for ccy(z, —4-8:), For this “a\lée the » caleu-
lated in § 3.43. Then
Ay = vy d,, Ay = vvp 4y, Aﬁé o ¥y Ay,

and we find approximately that ,\
Ay = —(1-36740; 5880)4,,
Ay = (0013408 468;) o (1)

4, = (0 0655,0 0153)4,.
Thus to a first approximatieny we obtain
cey(z, 4-8) = 0[1 (19367 0-588i)cos 22+
4 (0-013%4:0 468@)005 424 (0-085—0-0154)cos 62-F...].  {2)
Writing (37 —z2) $d€2 in (2) leads to
cey(z, —4: s\) A [14-(1-367-0-588)cos 22+
\HO 013 0-4684)cos 42— (0-065—0-0157)cos 6z+...}.  (3)
It may bB remarked that (3) is not (2) with the sign of ¢ changed
(see-fodtnote to §3.41).

46 @, and the A for cey(z, —4-8). 1t is found by computation
[57] that when s > 1-4688..., @, is complex, and its conjugate is a,.{
By applying §3.44 to the value of &, in Table 4, we obtain

a4, — 2:82120 8—6-56266 8, (1)
5O o = 2-82120 §1-6-56266 8¢. (2)

T This has not heen equated to unity becaunsc g is imaginacy (see § 2.21).
$ No formal proof of this has yet been published.
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The v for ce, are obtained from those for ce, by merely altering the
signs of the real parts—a procedure whose vahidity is casily eslab-
lished. Thus from {3}, (4). {6) §3.43, we get
vo = L-367--0:388i,
vy == 0-132—0-2858, %)
v, = 0-0276—0-139i,
these data being approximate for purposes of illustration. The A
may be calculated from formulae at the beginning of § 3.45, but they
can be found immediately by changing the signs of the real and
imaginary parts in alternate 4 in (1) §3.45. Thus for ce, weiave
A, = (1-367--0-588i)4,, ~ N
Ay == (0:013—0-4680) 4, (4)
Ay — —(0-0651-0-0150)d,.
Hence we find that
ez, 4:81) = A,[14-(1-367--0-588{)ggb2e--
+-(0-013—0-4687)cos 42— (0‘965+0 015¢)cos 62-+...], {5}

and, therefore, writing (37—2) ior zr
- ceylz, —48i) = A [1—~(1- .3?_‘57 - (-588%)cos 2z-+-
—{—(0-0]3_-0'4631}11634z—1—(0-065—[—0-015¢')003Gz—i—...]. (8)

N

3.47, Gharacter:sﬁc numbers for other functions when s is
positive. When ¢ 30 = 0 and the characteristic numbers are com-
plex, numerical vglues indicate the following results [57]:

P\% a, is conjugate to a,,
:”\’::'\“ a'], 3] 1 bl)
\.,.« s " T b‘J!
&
‘."" ba 33 LR bai'
”\Ifa\'ﬁ 18 large enough, numerical valucs indicate that [57]:
3
g ~ by,
thy ~ by,

3 {ag+by) ~ I,
ity i-by) ~ T,
bl—ao ~ AD?
b‘!-—{l-a ~ :31.
See § 3.48 for meaning of symbols.
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it may be remarked that when s varies from 016 to 1-44, q,
varies from 0-012836 to 1-689280, whilst @, varies from 3-989297 to
2-481324. Thus the variation in (g4 @,) is from 4-002132 to 4-170604,
80 {ayt+a,} is in the neighbourhood of 4 when s is in the range
G-16 < s <l 144, i.e. the two ¢ are real. This is readily explained
by aid of (1) §3.41 and (1) §3.42. From these formulae when s is
maoderate

! T 763
3 = 4 L 2 N —_. 1
(o-6) +(2 ) F(ug 158)4)s M
A
1 7
e el Ve
TS T memt O B

86 the dominant term is 4. Numerical data show .j;I:}a:t as § >
+1-4688..., g, — (2--0), and a2 = (2-40).
Rince the series for a,, @, at (1) §3.41, (1) §3.42 {{mceed in powers
of 42, all the terms are real. The fact that a4 @yare both complex
when & > 1-4688,.. indicates, therefore, that\the series cannot hold

then, i.e. they appear to be divergent. \s

3.50. cer, cei, ser, sei functions., In § 3.40 et seq. we have seen
that ce, (2, —is) is a complex functa(m of z, so we may put

ce,{z, -—~35} = Lcrmz—Hcetmz (1)
Writing the complex coefm’lentg in polar form, we take
’g"‘}‘ (m) — |A."”’]e”ﬁ.
\

‘Thus, if ce,,(z, —}-13) — Z AL cos 27z, by (2) §2.18 we have

P\% r=9

Ozl "_\"i\"') = (— 1‘)""‘_20 (—1yAE" eos2rz

N\ A
J‘.\'\ = (1) Y (— 1| A e cos 2r2 (2)
N =0
AN °
\“‘ = (—l}ﬂ[f;}(wl)'[Ag“-;’”fcos Py, 008 212+

-+ i (— 1)1 A$™|sin @, cos 2rz], (3)
r=n
80
cer,, z = (—1)* i {—1)[AEZ™M| cos Py, cos 2rz 4)
=R
= {—1)2| AZM} {1 |v,]cos ¢, cos 22+

+ |y wp| €08 §, 08 42— |B v 2, lCOS P eOS 621}, (6)
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and . _
ceiy, 7z = {— 1) > (— 1487 |sin g, cos 2rz (6)
=0

= (—1)P]AEW | {1— |vy|sinp,cos 22+
+ |0y 0, l8inp, cos 42— |40, v4sin pg eos 6z+...}.  (7)
These series are absolutely and uniformly convergent in any finite
region of the z-plane. The series for cerp, s, Celzy 1, ST, 61 i, May

be found by procedure akin to that above. The modified functlons
Cer,,, Cei,, etc., ave derived from the foregoing by writing iz for z.

3.51. Bessel series for cer, cei, ser, sei. Writing k = {as)* =z g4
in (2) §8.20, using the complex 4 from §3.50, and, the relation
L(u) = (—1F J, (i), we obtain : \ O

ceg, (2, i9) cei;_lggm%) Z Agn, tg@;{ginz). (1)
Writing (iw—z) for z gives N
. cey,{0, 18 &o n g ‘
cey,(z, —is) = (—1)* “14((2”) ) Z' AE™J, (2i cos z). (2)
By [202, pp. 121, 122], we have \
Jolitu) == berwu—{«abel ot = My, (u)etrltd, (3)
Let ce,, (0,45)/4, = B, ¢ e“"f'm and. use (3) in (2}; then we find that
~
e2,(%, '“%Q“*— (-—1)*Ey, E | AL2 M, e¥Ger For-tfan) (4)
80 CB]’.'RWZ: (—1)'"’_E2n 20 [Ag.n')|M23.COS(92,.+CP2).+¢2“)', (5) '
’t\“ w - . B
and \::~\Céi2nz - (_Uu—Ezn 2 IAEE%'M lMﬁrSin(gzr+q’2r+¢'2n)s (6)

the argument of M, # being 2lcosz. These series have the same
p sconvergenee properties as in §3.50. Series for the other functions
may be derived in a similar way, while those for Cer,,, ete., may be
obtained if ¢z be written for z.
By replacing &% in (3) § 2, Appendix 1, with —ik$, it will be found
that when the fundamental ellipse tends to a circle, Cer, Cei, ete.,
degenerate to constant multiples of the ber and bei funetions. -
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GENERAL THEORY: FUNCTIONS OF FRACTIONAL
ORDER: SOLUTION OF EQUATIONS

4.10. Introduction. The discussion in this and in the next eight
sections applies to any linear differential equation of the second
order with single-valued periodic coefficients, e.g. (2), (8) Chapter 1,
these being Mathieu’s and Hill’s equations respectively.
Let 7,{2), #4(z) be any two solutions which constitute a funda=
menta! system. The complete solution is A
y = Ay(2)+ Bys(a), AN

A, B being arbitrary constants, If we write (z) (fc;ir. z, then
¥{z+7), yy(2+=) are solutions also, = heing the perigd of the co-
efficients. In accordance with the theory in.[49]; & have

¥izt7) = “1?1(2)‘%“23!2‘(?{)\\: {2)
vale-tm) = Bun(a)+ Bl (3)

where «, ay, B,, B, are-constants determinable from the conditions
at, say, z = 0. Itis convenient in thié' discussion to choose the initial
conditions y,(0) = 1, 3,(0) = 0, wh(0) == 0, #;(0) = 1. Substituting
the first and third of these in/A2), (3) yields

a Z’\?;lf\"), £ = yalm). (4)
Differentiating (2), (;5,):with respect to z, we get
..\:I:\yi(zﬂ%} = o1 (2)F o %), (5)
and \i\:' Yaletm) = Buyn(R)+Bayale); (6)
80 insertio}i of the second and fourth conditions leads to
\ : ay = ilm), By = yalm). (7)

If 3, were an even function of z, and y, an odd one, on writing
* = —x in (3) we should get

¥of0) = 0 =B, ?}1(‘"’)"‘5292(”) = Bi{oy—Po). (8)
Since 8, 5= 0, it follows that o = £, ie.
‘ n(m) = yyln). 9)

4961 1
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4.11. Relationship between y(z) and y(z-twm). From {1}-(3)
§4.10 we have

yiz+7) = Ay (z+7)+ Byola+n) {1
= A{qy(2) o yal2)} BB, ¥1(2)+ Ba ya(2)}
= (A‘fh"t‘Bﬁl)?h(z)+(A9‘2+Bﬁz)yz{z)- {2)

Thus, if , a constant, can be found such that (4o,+ BB, = o4,
and {Ax,+ BB;) = @B, then by (1} §4.10, (2) above may be written
in the form

ylz-+m) = op(z). o 43)
This necessitates : N\
Af{oy—9)+ BBy =0, or —A/B = Bi/lx ?)x {4)
and Aoyt B(By—9) =0, or —A|B={(B— QP)‘/% {5)
Accordingly, if 4, B are non-zero, we must have,j b
— ) (Ba9) = mBar (6)
or — (o HBa)p (o Bo— ‘%361) =0 {7

Sinee ay,..., B, were determmed ing§4 O the two values of ¢ which
satisfy (7) may be exprcsaed in tepms’of y,(m), y1(m), yol), yaler).

4.12. Introduction of the mdex p. Let @ = etm, where u is a
number dependent upon thes p&rameters in the equation, i.e. ¢, ¢ in

(1) §2.10. Also take qb(z =le-#2y(z), both of these being definitions.
Writing (z-4-7) for z gites

Jear) = e #Ermy{z L) (1)
\\ e
. ( == €M Ty (2),
by (3) § 4. ) = eroy(z) = $l2). (2)

Hence g’{@) is periodic in z with period . Since y(z) is a solution of
the t&qre of differential equation under consideration, it follows that
_e_fiz'g!g(z) is a solution.

; J 4.13. Complete solution of equation. For our specific purpose
we fix attention upon the cquations

- «-+ (2 —2¢q cos 22}y = 0, (1}

and Ez'g*i‘[““?q d{2)ly = 0. (2)

${z) is an cven, differentiablef function of z, periodic therein with

1 See footnote on p. 127,
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period =, e.g. ¥{z) = 2192,. cos 2rz.t By virtue of periodicity =, we
take

4= 3 o, @

and d(—2) zr};mc” g=2ral, {4)

Then by §4.12, if p = a--i8, a, f real, e#%(z) 1s a formal solution
of (1} or of (2). Since both of these equations are unchanged,} if —z
be written for z, e~#%$(--z) is an independent solution, provided,
pither « = 0, or when « = 0, f is non-integral. Hence the complete
solutions of equations of type (1), (2) may be expressed in the forn
7NN “
y{z) — Aens i Cgrﬂzﬂi—}—Bﬂ_ﬁz i (;Zre—-?.rzi, ,‘.'}‘ \ (5)
F=—m o= —0 A 3

4, B being arbitrary constants. The above analysis is“b:gs;éd on [215].

4.14. Stability of solutions, z real. \
(@} A solution is defined to be unstable i\f’z?}'tcnds to 4o as

g — o0, N\
(5) A solution is defined to be stable if ittends to zero or remaing
bounded as z -» 0. oW '

(¢} A solution with period , 273-~i§.'ffiaid to be neutral, but may he

regarded as a special case of . stable solution.

Cages {a), (b} are non-periodie.§ In (5)§ 4.13, since the sigma terms
are both periodic in 2, hg‘gf-ability depends upon ek, i.e. upon p.
It may, in general, hawe any real, imaginary, or complex value, If
real and positive }\'O;“e}“—> oo with 2. Hence the 4 member of
(5) §4.13 tends 1;6\11—‘00 as z — oo, while the B member approaches
zero. Thus thgfirst part of the solution is unstable, but the second
is stable, s6“the complete solution is unstable. If p is real and
negati\{e{fiﬁstability arises from the B member. '

‘f{hﬁ}r i = i8, B8 non-integral (5) §4.13 gives the stable solution

yz) = A f: ¢, @B+ B i 0y, ¢~ 4P, (1)

If B is a rational fraction p/s, p and s heing prime to each other,

T In § 6.20 the ¢, must be such that $(z), ¥'iz),... are unil'url‘nl_\r"('.onvergent axnd,
therefore, i, i,... differentiable term by term, Ina practical application the numberof
terms would usually be finite. It may someiimes be expedient for ¢(z) to have
additional propertics specified in § 6.10, with @ = I. o

1 With ¢ as ahave. § Except as in (1) when the period is 2am.
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the ¥ members are both periodie, with period 2sw. When § is irra-
tional, the solution is oscillatory but bounded and non-periodic, i.e,
it never repeats itself exactly at any interval. The I members in
(1) are independent solutions of (1), (2} §4.13.

If u = «+1f, where «, 8 are real and non-zero, {5) §4.13 assumes
the form

Y2} = Ao S oy c@rtBeiy Bemoz 3 o, g-eripi @)

and from what precedes, this is ap unstable type. In numerical work
it is possible, however, to arrange that g shall be eithér ‘real or
imaginary (according as the solution is unstable or stable), but not
complex; also that 0 << g < 1 for convenience (see §4\70)

~

Recapitulation. R ¢ N
{e) The solufion is unstable if p is any rea{number = 0.
(6} Tho solution is unstable if g == aF¥8Ma] > 0, |8] > 0.

{c) The solution is stable and periotic if u = i, § a rational
fraction. \

(d) The solution is stable bug 'non-periodjc if o = 18, B wrational.
In {a)-(d) the complete solutioil'is implied.

4.15. Alternative fut"fxié of solution. In accordance with the

theory of linear différential equations, we may choose as a first
solution ’{”,\

y(e) = 34 {BM’.\ﬁ\ “;zr et o~ z —zm} (1)

A\

= Mco(eﬁz.{_.g—}w)_i_ lAe,uz{ g 92’3*+c 3—-2rzi)] +

3o 3 (o erito gy em)] (2)
= Acycoshuz+A ri{cm cosh(p+2ri)a+c_q, cosh{pn—2ri)z}

= Arimog,, cosh{p-1 2ri)z. (3)
As in §4.10 suppose ¢,{0} =1, then 4 = 1/202? and, therefore,

oy = Yy(7) == tosh um, #i(nw) = cosh pnm, (4)
for all finite values of p.
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Starting with a negative sign within the rh.s. of (1), we obtain
a second independent solution, namely,

val#)) = B 3 oy sinh(ut2ri)e (5)

As in §4.10, let ,(0) = I, then B = 1/ i (p+-2ri)e,,, S0

B2 == ya(m) = cosh ur, ya{nm) = cosh pnar, (8)
provided {5} is uniformly convergent for differentiation of the series
to be permissible {see §4.77). A\

From (4), (6) we get .
ylm) = dalm), or o =B, R
and yq(nm) = yy(nw) = cosh pnor. (8

Again, from (3) : '“~.
yi(z) = 4 2 (p+2n)cz,,smh(p—|—‘>m)z -

provided (3) is uruiormly convergent (sce §4 7 Q Then with z = =,

oy = yl(w) A sinh pr Z (“u-]— 2ri)Cqy

— %mg};gﬂ. | (9)
, )
Iso _ yl(n—.-r} —smhpmr - (10
Writing z = # in (5) ieadSzt@
31\: ylm) = Esmhpm' {11)
\& B
Also o telnm) = Zsinh pnm, _ (12)

:"\:§~
“231;,-’)'(17)3{2(17) = sinhZumn, yy (nm)ys{nm} = sinh®unar, {13)
rom (43 (3)
}’1.32 == yo(m)y(m) = cosh¥um,  yalnmlyy(nm) = coshPunm. (14)
By (13), (14)

B0

oy By —wp By = y;("')?h(")*?i(“)ya(“) =1, (15)t
and - Yalnm)y () —y, (nm)ys(nm) = 1. (16)t
Substituting from (4), (6), (15) into (7) §4.11, we find that

Py = ek, Py = e7FT, P g, =1, ‘Pl = 1/g,.

t These are (2) § 2,191 with z == = and nx, respectively.
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These results are valid for p == a+128, a 7% 0, or if x = 0, B is non-
integral: also y(?) is even in 2, whilst y,(z} is odd therein. This
restriction is removed in §4.152.

4.151. Extension of § 4.11. Beverting now to (3} §4.11, if #,(z)
be a solution of either (1}, (2) §4.13, then

yy(zkw) = et e). (1)
Also, if y,(2) is & linearly independent solution,
Yalzbwr) = €77yo{2). ~ (2
From (1) ethm = y, (2L m)fy(2)- O\ (3)
Howe oo her = et )k ek O oW
If z = 0, and ,{rr) £ 0, (4} gives m\:‘ ’
e = [yl(w)iyl(jz)m{(fJ). )
Similarly (2) yields the formulae ,\ -
i = Brlei R )/ 20500 )
when z = , = J9hl0) a2 20, @)

provided ,(0) £ 0. Mince ¢(z) has period =, y,(0) = 0 entails
yo{nm) = 0, s0 (7 \{*{'jﬁhd then be indeterminate,

4,152, A mere general case. From § 4.12 the solution of (1), {2)
§4.13 has thederm
2 Y= o), (1)
wher\for convenience we shall take 2 as the period of ¢(z). Then
% \\
(“L‘J(::"-‘-'T) = ¢(=), and
O y(—m) = ebhlm).  y(m) = erm(m), (2)
\ .
Vo ylm)—-etrmy(—m) = 0. (3)
Similarly we obtain :
y () — ey (—m) = 0. (4)
Let ,(2) and y,(z) be any two linearly independent solutions, and
 substitute ¥ — Ay, (2} By,(z) in (3), (4). Then we get
Alytm) — ey (—m) ]+ Bly(m) —emyy(—=)] = 0 )
and  Algi(m)- ey —m)] + Bligm) —emmyy —m] = 0. (6)
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For 4, B non-zero, we must have
[ogy () — ey (— ) Ny (m) — ¥y —7) | —

—[ya(m) ey (—a) [ ) — ey (—m)] = 0, (7)
ie. ew—-ge%m}--l =0, (9)

where
D = yy(—myaln) iy (mys(—m) — g —mhyym) —ya(m ) (-7,

and
Yu(m)yalm) —yalmia(m) = gr{ =) — gl =yl —m) = &

(see § 2.191). Solving (8) leads to R, \)
cosh 2umr = Df2c* ~ )

It may be remarked that conditions respecting oddness aZr;d evenmess

of the solations have not been imposed. This is usefili\in connexion

with problems like that in §6.40 where the solutions'are neither odd

nor even. The preceding formulae are valid if’nm is written for =,

N\ N
n ’>,‘ 2. \9
If we assign the initial conditions

nl—=) = ypl-—m =1, hl-m = gil—=) =10,
(9) becomes cosh 2um = [ {m)+ya(m)]/2, (10}
and, as before, = may be rgpjéced by n.

4.153, Fuuctions ha}\i\n;g period 2. Apart from §4.152 the
analysis in this cha;ztér'has been based upon a solution of the type

eh(z), with ¢z}’ % ¢y, 2%, which has period #. It is preferable
NG

that p Shouﬁs“b'e real or imaginary (p = if, 0 << 8 <1), but not
Complex.g’ﬁo obtain this objective when the parametric point (2,¢)
lies in (Cartain regions of the (a,g)-plane (see Fig. 8), which are
specifid later in §4.70, it is essential that $(z} has period 27. The
-results in §§ 4.10-4.151 are applicable if for 7 we write 2w, and take

¢(z) — z Cort1 plar+2t, (1)
r=—i0
also in all infinite series we change 2r to (2r+1). The relation corre-
sponding to (4), (8) §4.15 is now '

yylnmr) = yynm) = (—1)"cosh pnm. (2)
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4.16. Form of solution when p.= if, 0 << 8 <C 1. In (3) §4.15
write p = ¢f, and it becomes

p() = A 3 cycos2rBz, (1)

while the same substitution in {5) § 4.15 gives the linearly independent
solution :

hi)) = B 3 oy sin(2r-+z, (2)

the i being dropped, since it is merely a constant multiplier ~Hence
the complete solution of

¥ +la—2gcos2)y = 0, R ~ (3)
takes the form ™
¥e) = A4 3 cpcos(rBrtB 3 cz,sxn(2r+ﬁ)z, (4

P2 Q&

and this constitutes a fundamental systemh\ ’

Corresponding to (4}, (8), (13) §4.15, we.have
yi(nm) = y;(nwl"—\ébsﬁnw (5)
and ALY Jz{mr) =~ sin2Bna. {6}

These are readily checked byvu'smcr (1), {2) and the initial conditions
#1(0) = 2(0) = 1, 1,{0) = 3{1(‘}) = 0.

Additional forms of sofugion. Replacing 2r by (2r+1) in (1), (2), (4)
in accordance with &4:153, leads to the solutions (independent of
each other) N\

o) =4 3 epiqcos(@r+H14p), M
I
and \\ ya(2) = B Z ('2,.+13111(2'r F14-B)z, (8)
A
gwmg for the complete solutlon

£ \
YD =A 3 cyncos@t1+BetB 3 cousin@r+1+f)e (9)
‘orresponding to (2} §4.153, we have
Yilwm) = yylnar) = (—1)" cos o, (10)
which can be confirmed by using (7), {8).
It may be remarked that the 4, B are quite arbitrary, and need

not have the values obtained in §4.15, using the initial conditions
stated there, i.e. any appropriate initial conditions may be chosen.



4171 FRACTIONAL ORDER: SOLUTION OF EQUATIONS 65

4.17. Solution when 8 = 0 or 1. Consider any point (a,¢}, g > 0,
in a stable region of Fig. 8 A near a,, but not upon it. Then (3}§4.16
has two independent coexistent solutions, namely, (1), (2) §4.16.
On a,,, 8= 0 and (2} §4.16 ceases to be a solution.{ Substifuting
either (1} or {2} §4.16 into.(3) §4.16 and equating the coefficient of

cos(2r-+8)z or sin{2r+4-f8)z to zero for r = —ao to 00, we obtain the
recurrence relation
[@—(2r+B)Joo,—q(0gr 12t Cor—g) = O. (1
With § = 0, (1) becomes
(@—4r®)eq—q(CarsntCorn) = O (2)
Writing —r for 7 yields R ~

4"‘2}6 “9‘{0—2r 20 grs 2) = 0. ("}'g . (3)
Then {2}, (3) are compa.tlble provided ¢, # 0 and Cor 2 mzm 1 =1
Hence, when 8 == 0 and @ = ay,, (1) §4.16 may heWzitten

Wz} = A[c‘,—i— 2?-2162,. cos %’z}»\ (4)

which is & constant multiple of ce,,(2,¢) a‘s: defined at (1) §2.17.
When g = 1, (@,q) is on by, ,;, and (I} §4.16 ceases t0 be a solution.

The recurrence relation is now %
[a‘—(z?'—f"1)2}??—'d(csr+z+02r—2) = 0. (5)
Writing —(r4-1) for 7 in (5)\gives
[a—{2r+ i\}?]ﬁar 2= (e gt C gy} =0 (6)
Then (5), (6) are| compa,tlble 1f Cop = —C_gpn; €8 €= —Cog
€y = —C_, Henqa (z §4.16 may be written
\'\\"“\ . Yoz} = 2B z CaparSin{2r+1)z, (7)

Where czﬁl ‘has been substituted for cy,. This is a constant multiple

of 3%;4_1(2 g) defined at {3) §2.17.
With 8 = 0 in (7), (8) §4.16, ¥,(z} is not a solution since (a,q) is
on a,, ;. Then as above it can be shown that

1e) = 24 3 carsy 082 15 (8)

which is a constant multiple of cey,.4(2,¢). Similarly with 8 =1in

1 8ee § 2.13 ot seq. The characteristic numbers for ce,,, se,, a7¢ difforent.
4561
K
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(T), (8) §4.186, y(2) ceases to be a solution, since (@,q) is on by, ..
Then we find that

Yal?) = 28 Zucg,.ﬂ sin{2r 4 2)z, (9)
which is a constant multiple of se,, (2, ¢)-

4.18. Changing the sign of ¢. Except in § 4.17, the sign of ¢ has
not been specified. Assuming, however, that the various solutions
are for ¢ > 0, those for the same @ but ¢ << 0 may be derived if
{w—2) is written for z. ~

4.19. General relationships between the solutions, .We com-
mence with (2), (3) §4.10, and use the values of o, %;QQ\I} B, and the
initial conditions stated therein. Then if y,, ¥, are indépendent solu-
tions of (1) &{ of (2) §4.13, a3

p(m+2) = gl ()N (1)
and Yalmt2) = Yalmly )l )yate)- (2)
Writing —z for z, and postulating that y, is even and y, odd in 2,
(1), (2) yield P\

alr—2) = BN —~Yaly) )
and Yol —2) YoMy — (@ hy(2). (4)

Formulae (2}, (4) are g,n‘eil'égous to those for the circular functions.
Four additional relationships are obtained if (1)-(4) are differentiated

-with respect to <} ?
Writing (z->a) for z in (1), (2), and (74-2) for z in {3), {4) leads to
£ D () = nulmn TR Y F2) (5)
and ~\\ $al2) = LYy (mF2) FymlyalnT2). (6)

Difierbntiating (3), (4) with respect to z and using (2) §2.191, we
gbt-a-in
$i(m) = W (m—2) T3 —2) (7

and Yolm) = YoRMglm—2) 4o (2)ya(m —2). (8)

The following may be derived from (1)-(4):

P 2a(m—w) (@ (r—u) = pwylr k) —y(wyy(ntz) @)
and

Yy{2)yalm 1) Yol (m+-u) = yy(w)ya(m£2) Hys(wy(rte). (10)

If y, and/or y, is periodic, the above relationships may be simplified.
It may be remarked that if y, is periodic in z with period = or 27,
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¥y is non-periodic. But if y; has period 2s7, s > 2, y, also has this
period (see §4.71).

4.20. Determination of u when ¢ is small. Dividing (1) 1°
§ 4.750 by [(2r—ip)*—a] and writing £, = ¢/[(2r—ip)>—a] leads to

CoptEn{Coprat-Corg) = 0. (n
With r = ...—2, —1, 0, 1, 2,... we obtain the system of linear equa-
tions:
046 ye g+ ¢y +E4¢ 5+ 0 + 0+ 0+ 0 +
0+ 0 +ésc 4+ ¢y +& 46+ 0 4+ 0 4 0 A
0+ ¢ + 0 +&eot ¢ Fhot 0 -0+ . &S0
O+ 0 + 0 -+ 0 Féogt o thot 0+
0+ ¢ - 0 4+ 0 + 0 +{et 6 +§§cs\'£"' .
. . . . ; 5 . -

For (1) 2° §4.70 to be a solution of Mathieu’s, elq\\létion, (2) must be
3 consistent system of equations, i.e. they ‘:’['hs}st be satisfied simul-
taneously, so the eliminating determinagﬁ for the ¢ {variables of the
equations) must vanish. Thus we ggt{ﬂfe infinite determinant

£, 1,4 0 0 0
.0 .5.42\ I £, 0 0
Ay =] . 0.0 & & O
. .\’0'."' 1] 0 gg 1 f?.
\0 0 0 0 64 1 64
4 Y . . ) . |

—0. (3)

f=a T - T s R e R

When exp&h}ed this eonstitutes an equation for p. If in the ¢ we
Write 10, the determinant A(0) is obtained.

431 Convergence of (3) § 420. An infinite determinant is
absolutely convergent if (¢} the product of the diagonal element's
is absolutely convergent, (b) the sum of the non-diagonal element's 18
absolutely convergent. (a) is satisfied, since the product is unity,
while for (b} we have to demonstrate the convergence of

3 @r—iwp—a] = ii},—i%l/ [(1—%’3)2—5:5] W
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When |r| is large enough, the terms under the sigma sign on the r.h.s.

of (1) are each < [r| =7, 1 << p <C 2. Now the series S 1{r? is known
1

to converge, so (3) §4.20 converges absolutely for all finite ¢ and y,
provided no denominator of one of the £, vanishes, ie,

(2r—ip) # ab.

4.22. A{ip} as a function of the complex variable.

(@) (i) Writing —p for p and —r for r leaves A(zp) unaliered, since
(2r— i)t — (—2r-+ip)t. ~
(i) r takes all integral values from —co to 400, 50 that ‘trans-
position of the elements with -7 and —r leaves A(i;{)"uﬁ&ltered.
Hence Afip) = A{—ig), so that A(ip) is an even function of u.
Yurther, if a, ¢ are real, so also is A@Fp). ¢ ™~

(®) [2r4-i(p+20)] = [2(r—1)+inl, so replaging (r—1) by 7 in the
second bracket gives (2r-iu)?, the dserminant is unchanged
and Aip) = Ali(u+2i)]. Hence Adsperiodic in p with period
94, 8o its behaviour everywhere.jg deducible from that in the
infinite strip of the u-plane, P<¥Im(p) < 1.

(¢) The only singularities of Avare simple poles which oceur when
[(2r—ip)2—a] =0, i.e'.,:p};": i(at—2r) and —i(at42r). Now
the function x(ip) =W(cos ipm—cosmai) has simple poles ab
these values of w4 while its period is that of A(ip).

(d) ¥From (c} it foll{i:xﬁ that the function

N i) = AGr)— Oxlin) M
will have 1o singularities if C is suitably chosen, so by Liou-
villg’s\theorem it must be a constant.

(¢) T¢ deétermine €' we proceed as follows: When g - c0, all the

L&In (3) §4.20 tend to zero, and the diagonal elements alone

‘,\f S remain, Thus lim A(ip) == 1. Also lim y{ig) = 0, and, there-

O fore, f(ip) = lfL Then ‘
_ Cxlip) = Alip)—1,

or O = [Afip)— 1] x(op)- (2)

When g = 0, y(0) = 1/(1—cosmat), while the value of (3) §4.20 is
A(0), the ¢, being g/(412—a), @ + 4s2, to avoid an infinity. Hence
by (2) ¢ = [A{0)—1]1—cos ma?]. (3)

T We nssume that @ == 472, so p =0isnota pole.



422] FRACTIONAL ORDER: SOLUTION OF EQUATIONS 69

With this value of C, (1} is devoid of singularities in the p-plane.
The preceding analysis is based upon [215].

4.23. Solution of (3) § 4.20. This determinantal equation is
satisfied if g« be such that A{iu) = 0. Substituting this for A in
(2} §4.22 and equating to (3) § 4.22, we have

1/x(ip) = [1—A{0)][1—cos mat]. (1)
Now 1/y{ip) — cosiur—cosmatl, so by (1) we get
cos iunr = cosmat-+[1—A{0)][1—cosnat]

= 1-—~A(0} 1 —cos mal] (2)
¢SO
or sin? $ium = A(D)sin? lna? (o = 4r7%). A3
This result is obtained in [213] without recourse to the (cdygiplex
variable. RY,

The values of p which satisfy (3) above, satisfy (3“};§:L.20 also,
Hence 1 is determined if A(0) can be evaluated. I\fg is small,T by

aid of [213] we find that \\ ’
— g cot mad O (4
A(0) ~ 1— s 11 )
§0 (2) may be written o
©0s ipm = cos mai-[ng?sin rgfdata—1)] (2 # m?). (5)

4.24. The roots of (3) § 4.20> The determinant being an even
function of i, if i, is & root,60A(G) = 0, 50 is —ip,. Since a linear
D.E. of the second ordex has no more than twe independent solu-
tions, 44, are the onlydistinctive roots. Now the non-d‘ia,gona,l
elements are £,, = ,’T(\Zr—ip)z--——a], and if we write ip = {ipy~--27)
in the elements Qli:e'?;her side of the origin where r = 0, oy _abmie
is obtained. 'I.‘lielrésult of treating all non-diagonal elements in this
way is me-reljﬁ:to shift the origin, and to leave A(in) unchanged. It
follows thh the roots are iu = ipg—2r, 7 being any integer. If ity
is real\the roots occur in conjugate complex pairs tpg— 27, — o™ 2r.
If 41 is imaginary (= 48), the roots occur in the real pairs +5—2r.
For py = w+if, ipy = ia—p. Since r is any integer, we have the
conjugate pair ix— B--2r, and —ia+B—2(r+f) = —-%-cx—ﬁi— 2r, pro-
vided f is an integer. Hence p may be complex if its imaginary part
I8 infegral.

+ It sufficos if the term in g® in (4) iz small compared with unity.

Q"
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Recapitulation.

(@) If py is real and r = 0, pp = i, Is real.

(b) If p, is real and r = 0, p is complex.

(¢} If p, is imaginary, p is imaginary for all 7.

(d) If py = a8, B an integer, u is complex for all 7.

As shown in § 4.70 the form of solution may be chosen to make
4 either real or imaginary (according to the position of a, ¢ in the
plane, Fig. 8), but not complex. These remarks apply to all real
values of a, ¢ finite. The determinantal method of finding p is
unsuitable for numerical evaluation unless ¢ is small. . When g
exceeds, say, ¢, the methods exemplified in Chapter \" \s-hou]d be
used to get accurate results. N\

4.30, Alternative form of general solution [18()] ¥or the first
solution we take Y1) = ez, o), m’\g. (1)
¢ being periodie in 2 with period = or 2w, and ¢ a new parameter.
When (a,q) lies between a,, b, in Fig. 8/%e’shall obtain the form

$(z,0) = sinfz—0) 45, 6in(3z—0) 5 8in (52— 0) 4.+
+¢q 608(32—a)+-05 cos(52— )+, {2)
o being dependent upon a, g, 88 also are the ¢, s. ¢ has no term in
cos(z—o) as its inclusion‘aﬁc’)uld introduce a non-periodic term, &8
shown below. For cogyeriibnee the coefficient of sin{z—o) is taken -
as unity for all q. Sm‘ee g, @, g are interrelated, we assume that

= 1Hf(0)+4%Fa(0)HgYalo) 4 (3)

also @ F = 990 0{0)+ 50+ (4)
there bei}l{{.}lo term devoid of ¢, and we take

@z o) = sin{z—o)+gqh,(z, 0)+g%hy(z, o) -+-g3hy(2, 6 ). (6)

whei"e\f g are functions of o, the & being functions of z, @, peﬂodw
An'z. Substituting the r.h.s. of (1) into '+ (@ —2qg cos 22)y = O gives

O er "+ 2+ (u®+a—2g cos 22)¢] = 0,
and by the aid of (3)-(5) we get
—sin(z—o)+gh]+q*hs+ @R +... -
guz] T T LGt Tyt Y 00s(e—0)Lghy +Phi-HgPha+ - -
+{9+ 970+t P+ 1 gfi et —2g cos 22]
X [sin(z— o)}+qh, +q2hy+...]

= 0.

(6)
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Taking :
2008 2zsin(z—o) = [sin{32—a)—sin(z+-o)]
= [sin{3z—o)—sin(z—o)cos 20— cos(z—o)sin 20],
and equating coefficients of ¢%, g, ¢2,... to zero we obtain
q°: —sin{z—e)+sin(z—a) = 0 identically; (7
g h{+h+fisin{z—o}+2g, cos{z—e)}—2sin(z—a)cos 2z = 0.
Thus
A4k, + (2g, +sin 2e)eos(z—o)+

+(fi+cos 2o)sin(z—o)—sin(3z—o) = 0. (8) A

Now the particular integrals corresponding to cos(z—o), sin{z—g)
are Jzsin(z—o) and —jzcos(z—o). These are non-periodic and ‘Eéhd\
to 400 as z > 4oo. Since ¢ is to be periodic, the coeffivients
of cos(z--o), sin(z--o) must be zero. Hence we miﬁit“ have
¢ = —3sin2e, f; = —cos 2g, leaving kj-+k, = sm(3z—\g") S0

by = —}sin{3z—o). (9)
@ By+hyt2g, cos(z—o)— 3g, cos(3z—a)+ (gi-+faem(z—o)+

<o 4L sin(3z—o)cos 20—1—& sﬁ{Sz—a)cos 2z =0,

hg+hat2g, cos(z— o)+ § eos(3z—o)sin 2o {;} 3111520—]— L4-fy)sin(z—a)+
+}sin{3z— )08 20‘—]—%—8111(52 ag) =10 (10)
To avoid non-periodic terms we’:ﬁéke g, = 0, f = —}+}cosdo,
leaving the equation
hy+hy+ § cos{3z—a)sin 2{%‘1 sin{3z —o)eos 2¢4-} sin{5z-a) = 0,
of whlch the particularg mtegral is
= [3 sin 20 cos{84-- o)} cos 20 sin(3z—o) +3sin{2— 0)]/64. (11)
Proceedmg in. Q'ﬁs way, on substituting for the various functions

in (3), (4) we ?{ht‘am
o= 1—{}003 20'+ 17 (—] +3 cos4cr)+ —g8cos 2o+

\ )" 1,1 11 1 13 )
1 13 036
_}_ng4(3 3200540,) 3 q( cos 26 — 128005 o)
1 [ 8983 9181 -__?Ecosﬂa)-—--- (12)
~ 81927 ( P IR

(13)t

tituting (1) in the differential equation
and equating to zero the coefficient of

= l—q¢os 20— p2+4-95;.
T'l bix vesult was obtained by subs

¥ Fia -2qcosZz)y = 0, using & at (2},
am{-v —ol.
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3,
- — v 4o
7 zqstcr—i- 128 in 2o 032 sinde

1 {137 ., b9,
— 4_656? (_%_sm 25— Qsm 60) —+

16384

= jg{—sin20+c;). (15
Also

85 = g+ g cos Ar—-----zq (———[—000&40)—{— O

_[_—_q“( 57 14c~—1—§bm$a)—|— . (1)

N ¢

N
T4
+;1-0““§“69 (“—00&20—{—700&60’\) .. (16)

S

3 974, 0
cB:Ei?Lq2m n? ( lri{sm2:r—{—9sumhcr)—

4096
{17)
1, . 135 82
_ b e 1
% = 193¢ 1152q 8082“+4096¢(A g2 T 70034") (1%)
€5 = - ¢%8in 2o | U g‘s,1n40-— (19)
y 2304 276488
— — 2
% 9216q3+401a{q4°°s 2o 20)
35 :
b= 442368q ‘“\‘““ @)

8g = qu— (22)

A |

ft"may be remarked that in (2} the coeﬂici;nts of cos{3z—o).

\ 903{5z-—cr), .. are expressed in terms of sin 2o, sin 4o,..., while those
of sin(32—o),... are expressed in terms of cos e, cos4o,....

If in (12) we write --¢ for o, it is unchanged because & is an even

function of 0. Making this change in (14) alters the sign of y, since

it is an odd function of o. Thus referring to (1), we see that the

1 This result was obtsined by substituting (1) in the differential equation

y"+H{a—2qcos 22}y = 0, using ¢ at {2}, and equuting to zero the coefficient of
cos{z —a).
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second independent solution of Mathieuw’s equation may take the
form

Y2 = ez, —a). {23)

¥, ¥, constitute a fundawmental system, and the complete solution,
with two arbitrary constants, is [ 186]

y = Aerd(z, o} + Be#d(z, —o). (24)
4.31. Degeneration of (1) § 4.30 to ce,(z, ¢) and se,(z,¢). When
o= —%m p=0, ¢g=¢; = ... =0, and the series for o becomes
that for @, at (3) §2.151. Also

I U D B | B O
BT 306 Tmse? Taweal v @

and so on, while “:”:’«.
sin{(2n+1)z+{n] = cos(2n+ 1)z, L ¥ (2)

Substituting in (1), (2) §4.30, we obtain (16) §203; the series for
cey(z.q). Sumilarly, when ¢ = 0, (1), (2) §4.3075eld (2) §2.14, the
series for se,(z,¢). A

"

4.32. Useful range of formulae in§4.30. The series for a, g,
and the coefficients are similar in type\to those in §2.13 et seq. Such
series probably diverge when g, réb and positive, exceeds a certain
value. The first term of (12) § 430 is unity, so if this series were used
to compute a; for ceg(z, 0-4), Which exceeds 25, cos 20 would be corre-
spondingly large, and lo“’\ac\cﬁracy would ensue. This remark applies
also to the series for p“ﬂ:nd the coeflicients. Moreover, for computa-
tion the formulae imNg4.30 may be used when g is moderate and the
_Iloint- {7, q) lies .be'j:?vﬁéen the characteristics for ce, and se, in Fig. 8.

If (a,q) w “re~between the characteristics for S€y, CEy, & MOTE
suitable formof selution would be obtained by taking

9"(2<7~}§:; éin(22—0)+84 sin(4z— o) s, sin{6z—o)-4-...+

“regeo8(dz—o)4-cgco8(bz—a)-... (1)

= 8in(22—o) - gh,(2, o)+ g%hy(z, 0} ..., (2)

t}here being no term in cos{Zz—o , to avoid a non-periodic term of
the type 25in(2z—o) in the solution. If we assume that

& = 4+ qfy(0)+ ¢¥fulo) o (3)
L

4861

Q"
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we find that f,(s) = 0, while
falo) = -%—;,_}cos 2a, {4)
850 a = 4-+3¢3(k—Lcos20)+.... (5)
Owing to the presence of ¢ in (5), the coefficients of the terms in
powers of ¢ will be less than those in (12) §4.30 if o is, say, 46,
In general the solution preferably has the forms at 1° {3}, (8}, 2°
(2), (4} §4.70, the corresponding series for a being of type (3} ahove,

the leading term for ce,,, se,, being 4n?, while that for cey,, ,q, 8Cap1
is (2n41)% Q)

4.40. Maclaurin series solution. If y is a solution Qf\:}

Ny

¥+ (a—2gcos 22}y = 0, H
then by Maclaurin’s theorem \:
! ]- " ]- T ' . ]- n .7
y(2) = y(0)+2y'(0)+ 5;2% (0 + 577y (O + - YO0+ B
W (2)

the derivatives being obtained by Siccessive differentiation of (1)
and insertion of 2 = 0. Althoggﬁ:t-he procedure is simple, the sola-
tion so obtained has serious‘dx‘a;\;vba.cks:

1. The form, a power series in z, is markedly inferior in applica-
tions to those gi@zelipreviously. 1f (2) were periodic, its periodi-
city would bedifficult to establish. Also it is unsuitable for
interpretinghthe physical behaviour of a system, e.g. stability
and instability.

2. If com{ea‘gent, the rate of convergence is very slow and in many

569 the number of terms needed to obtain accuracy for even
. .z}im\oderate values of z, e.g. Jm, would be prohibitive: see [12].
83 The convergence is difficult to establish.

\/ 4.50. Relation between solutions in § 4.153 and § 4.30. The
respective forms are

=]
Fylz) = el"r _Z_ wézr g GO+ (1)

and
(7)) = et{sin{z—o)+ sy 8in(32—a)+s5sin{fz—a) 4.+
4 cO8(Bz—0) 4 ¢4 008(52— ) 4]y (2)
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# having the same value in both cases (seo §4.70). Omitting the
conmmon factor e#*, we expand the r.h.s. of (2) and obtain
¢(z} == sinz cos c—cos z8in o+ s4(sin 3z cos o —cos 3z 5in o)+
+55{8In 52 cog o —cos 5z sin o) - ... 4-64(cos 3z cos o+ sin 3zsin g} -+
+e5(cos 5z cos0+sinbzsine)+... (3}
= 008 g(8in z-{-8; 8in 32+ s 8in Sz+...+¢; cos 3z-F¢; 008 Sz ... ) —

—sin o(cos 2~} 83 €08 32455 608 Bz} ... — ¢y 8in Jz-—¢;sin 5z —...)  (4)

:Ti{_!{grﬂ cos(2r+ 1+ Lér-s-z sin{2r+4-1)z], (Sh,
where Ko\
Koriy = (6gr410080—8gysino) (r>0), K, = —sifig]
Liopis = (Sgp41 00865+ 65, 4 8i0)  (# > 0), Ly :"'cé'é'w.

Writing the cireular funetions in (5) in exponenti&lé\ e get

#(2) = ¥ i": [(Kapi1— Loy iq )™ "l}zi‘i‘(K2r+1‘],’i\%2r+1)9_(2r+1)2q- (6)
r={ "y

W

Now - o -
3 3} Epppq €01 — Z [5sr+1 e(2r+1)2:17]% Gl gp.g €~ +TBE], (7}

Fo=—

Hence by (8), (7) the two forms of selittion are identical, provided

Corrt = $Eo{Kpin—1Lnp11) and 8 gy = Mo(BpatiLos) (8)

z, being a constant. It follows from (8) that &y, Z5t and é_p_, Zgt
are conjugate complex nu{rgbéx's, while {6g4q| = [6.pp—q[-T By adding
the two parts of (8), we'met
Zu Kzr-!-l == 62r+1+6—2r—1’ (9)
and by subtractiufg: wre have
O ZyLy iy = HCria—C2r-1)- (10)
Writing r:‘h in (9), (10), and substituting the values of X;, Ly from
above, Jegds to
O Z,= (@ +ey)fsing = i(5—d,)/cos 0. (11)
t Writa Zy = Myeit, Coppr = Paran ebbpraa; .
then &,.,,2:1 = M pry gy €82, Tt 55" = Mg P
By virtue of the conjugnte property
tharys— B = = (gr—y — 8o} —28m,
ko By = Hibpr i1 +d—pr-z)tom .

§ being integral. Caryr Zyt and & _,,_, Z5" are complex conjugato only if ¢ is real,
16, when (a, g} lies in an unstable region of Fig. 8.

giw‘—lr-- 1_8.1.
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By squaring and adding both sides of (9}, (10) we obtain

Zg = 2(3r41 6gr1) PKE, +1+Laﬂ1) {12)
and, with r = 0, Z, = 2(& ¢ ) (13}

We have proved, therefore, that, save for a constant multiplier, the
solutions in §§ 4.153, 4.30 are 1dentlca] A similar conclusion applies

in connexion with the solution e#? z 2 €272 and its alternative form.
o
These results are to be expected, sinee the solution of Mathieu’s

equation must be unique. ~
4.60. Division of the (a,g)-plane into stable and unstable
regions. Fig. 8 shows the ‘charted’ ‘part of the plane? i.e. thab
portion for which the characteristic curves a,,, b, \for the Mathicu
functions of integral order have been computed./; Conmder the region
in Fig. 8B lying between a; and b,. On the~cui've @, 0 = —3%min
(12) §4.30. Now if ¢ = —in|-if, coslo <= ~eosh 28, whatever the
sign of 4, so if ¢ > 0 is fixed, (12) §4. 3[}\%}10“8 that a increases with
increase in # until b, is reached. Op-this curve from [191] wo have
@ = 4-1-%92’(33»%%{:% 96)+... (1)
with ¢ = 0. If in (1) we write o = i, a decreases with increase in
¢ until a4, is regained. Thu% ‘Between @y, by With ¢ > 0, o js complex
or imaginary according ak (12) §4.30 or (1) is used. If we take
o == —}mw+if, thengine —= —isinh 26, and (14) §4.30 shows that
p is imaginary a&;@, ﬁherefore by §4.14 the solution is stable.
Starting fram, by, where o = 0 in (1), if for fixed ¢ > 0, ¢ (real)
decreases, $hén g increases unti! @, is reached where ¢ = —§w. Since
o is realinthe intervening region, the series for p (like (14) §4.30)
mi y\Qe - shown to contain sin 2o, sinda, etc. Thus p is real, and by
§4~ 14 an unstable solution is obtained for any (a,q) in the region.
~Wow consider the region between: «,, b, with fixed ¢ > 0. Un the

\ 'f_ormer ¢ = —1= in (1), so the term in cos 2¢ is positive. If we take

a = (—17+i#), then cos 20 = —cosh 26, and by increasing § from -
zero in {1), b, will ultimately he reached. Using the procedul‘e
suggested in §4.32, we obtain [191]

a = 9+4—dgtcos Bed-.. (2)
for the region in question, and on b,, ¢ = 0. Taking ¢ =i in {2)
and increasing @ from zero, a, will eventually be regained. Thug
between ay, by, o is complex or imaginary according as (1) or (2) I8
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used. Since the series for p contains sin 2¢, sin 4¢, ete., x4 is imaginary
in the region, so the solution of Mathieu’s equation for an assigned
(a,q) is stable.

In this way the (a,q)-plane, for g positive, may be divided into
zones or regions in which the solution of Mathieu’s equation corre-
sponding to a point (a,q) is either stable or unstable. On the
characteristic eurves for the functions of integral order, the first
solution is neutial, but the second solution treated in Chapter VII
is unstable. When g¢ is negative, by writing —¢ for ¢ in the above
series and using a similar argument, the plane may be divided wg ™
a3 illustrated in Figs. 8, 11, The series for the « hold if |q|'§\g,,,
but tho results may be established for the whole range of g <\

Summary. (1) When (a,9), ¢ > 0 lies between a,,, b,,,,.Jn Figs. 8,
1}, p is imaginary, and the two solutions of Mathien’s jefqu;ition are
stable. N

(2) When (2,q), ¢ > 0 lies between b,,, a,,, ¢ 152l provided the
appropriate form of solution is taken (see 2° §4QB) , and the complete
solution of Mathien’s equation is unstable,~\

Apparatus for illustrasing stability is dedcfibed in [201] chap. X1V,
also in §15.40 et seq. '

4.70. Form of solution for different regions of (e, g)-plane.
Certain advantages acerue by assuming different forms of solution
corresponding to various;;eg\ions in which the point (4,9} may lie in
Figs. 8, 11. By adopting the convention given below, x will be either
real as in 2°, or imaginary as in 1°, but never complex. It will then
have the same vialkile’ for the two forms of solution in 2° (real), and
the three forn:ls'};f 1° (imaginary). z is assumed to be real.

1°. Smbl?\é’o}&tz'on, g small and positive. When (a,q) lies between
%ins 52n+1,},:f0r the first solution we take

QD) = e 3 ot oglay )
OF  iy(2) = _ﬁ €4y COS(27 +B)7 (2)

OF  y,(2) = ef[sin{2nz— o)+ s, 8in(22—0)+8,8in{dz—0)+ ...+
+’cgcos{2z—o‘)—]—c‘,cos(4z~—cr)+...], (3)

there being no term in cos(2nz—o), e.g. if n =1, ¢, = 0, for the
reason given in §4.30. In these series B is real and 0 <C g <l If
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» 3= 1, formulae for a, if = g, and the coeflicients ¢y, ;. may be
developed as shown in §4.39.
When (a,q) lies befween g, 4y, Dypq. for the first solution we take

iz} = eibs 2 €y gl2r 4wl — gific ‘f’(z}zrﬂ (4)
T=—

or () = 3 eayuycos(@rILp) (5)

or y,(z) = e fsin(2n - 1)z~ o0} + 4 sin(z—o) -+ sy 8in(3z—e) ... -+

' -}-¢, cos(z— o) €4 cos(Sz—cr)—J—\...}, (6)
there being no term in cos{(2n+-1) Jz—a}, eg. if n==1, 8y= 0, for
the reason given in §4.30. If » =1, formulae for a, zﬁ\n\ u, and the
cocfficients ¢y,_y, 8y, Mmay be developed as shown 1 in §4 30.

I'he second solution is obtained by w rltmgf—z for z in (1), (4);
sin for cos in (2), {8); —B for B, —o for o it {3), (6). In each case
the two solutions are linearly independenty provided 8 is in the range
0 < 8 <1, and constitute a fundamental system. When the initial
conditions are specified, all forms of ‘s\olutlon yield an identieal result,
since the solution is unique. A\ \%

. Unstable solution, ¢ smalband positive. When (a, g) lies belween
b sntz Tonpo fOr the first sql‘utlon we take

o ™3 -
yi(z) = etr Y ey, P — ef2d(z)g, (1)
= — 0D N

or yy(z) = em@\n{z}zzmaprsz $in(22 o)+ 5, sin(4z—a) ...+
+e, cos(22— o)+ ¢ co8(dz—o)+ .., (2)
where p (:&&}) > 0. See remarks below (3) 1°.
When\(a q) lies between by, ., 0q,,,, for the first solution we. take
4

'le(z} - e'uz 2. Cappy €TT = eR7(2)y, 1y (3)

\01' yi(2) = e#z[s:m{ 204+ 1)2—o}+ s sin(z—o)Fg, 8in(3z— o)+ ...+
¢, cos(z—o) -6y c08(32— o) -] (4)
See remarks below (6) 1°,

The second solution is derived by making the substitutions stated
in 1°. The period of ¢(z),, is m, while that of ¢(2),,.,, is 27. Observe
remark at end of 1°,

3°. Stable solution, g moderate and positive. See (1), (2), (4), (3) In
1°. The form at (3), (6} 1° is usually unsuitable for computation
when ¢ > 0-4 approx.
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49, Unstable solution, q moderate and positive. As at (1), (3) in 2°,
5°. Any solution, g negafive. In the solution for ¢ > 0, write
(37—r) for 2.

4.71. Mathien functions of real fractional order [134]. In
§4.16 (1), (2) ropresent coexistent solutions of Mathieu's equation,
i.e. for an assigned value of ¢ they have the same value of a. Con-
sider the region in Fig. 11 between the curves a,,, b,,,, with m = 1.
‘Fake any line parallel to the a-axis and terminating on these curves,
Hereon 0 < B < 1. If for any assigned 3, say 0-8, the g arc calculated
for ¢ increasing f10m zero in small steps, and the points plotted, the
characteristic curve 8 = 0-8 is obtained. Lying between those fqr
ey, 865, wo shall define it as that for the Mathicu funetion o£ roal
fractional order (14-8). In general, if (a,q) lies between tha curves

s Byiq, the order of the function will be (m—+8), and the value of

 on any curve is that for ce, g(z,q) and se, gz, @i %\é[oreover by
computing & series of curves at intervals of, say,\h= 0-1, we can
plot an iso-8 chart,t of the type depicted in I‘Lg\\ll

Forg = 0,0 << 8 <1, Breal, we adopt the\deﬁmmons [134]

g, 1 g(2, g) = i AQ"*B)COS(QH ﬁ)z, »coenstent golutions with (1}
. '., =y, +8' (a,9) between
Seanegltg) = 3 AP sin(Q-r+§)‘z,' @y, and by, 405 (2)
P —20
@ . coexistent solutions
Crns1spl® ) = _E Agﬁﬁlll\&obq(z”_ 1+8). with @ = @14,

{a,q) between dg,
Seon1148(7,9) = Z Agﬁ?ﬁ“ﬁ) sin{2r+4 148z, and by, 5. _ (4)

g < 0. wmt.;ug}ﬂ_z) for z in (1), (2), we ohtain

AN 3 .
Uﬁan+ﬁ(%§7\_ Z, q} = 008 %—ﬁﬂ. z (— I}TA(?E.“T'H) GOS(Z?‘"{‘B)Z‘F

N®
o~

O fsinifr 3 (rl)rA(Wﬂ’wm(h +8z {5)

F=—m

8€3u48(37—2,¢) = sin }fm Z (—1y AP cos(2r+-f)a—

contfr 3 (—rAg it fz (O

k [_?g;_ng an argument siuilar to that in§ 3.25, it may be shown that the iso-f§ curves
are single-valued and econtinuous.

Q)
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If we adopt the definitions

Cegy4gz, —g) = (—1)" i (— 1y A@2+8 cos(2r+ Pz, |coexistent  (7)
T solutions with
Seﬂn+ﬂ(z) HQ) - (_l)n z (_l)ngiﬂ-i-ﬁ) Sin(zf"l'/g)z: & = Mgy gs (8)
Fe=-—tm

each function is a linearly independent solution of Mathieu’s equa-
tion, and when ¢ — 0 it degencrates to the appropriate form given
in §4.73. The functions corresponding to (3), (4) are obtained by
writing (11+8) for 8 in (7), (8) and using A@11+A for AE+A. If the
tabular values of (1), {2) are known, those of (7), (8) m&y\be cal-
culated therefrom hy aid of the following relationships d\erived from

(5}-(8): <\
Gy, 4(2 —4) O
= (—1)"[cos }fi= cep,, g(3m—2, ¢} +sin %ﬁ”fﬁeamﬁ{fﬂ zq)] {9
and \‘

332n+ﬁ(z ~q)
= (—1)"[sin §Bm cey,glhm—z, 9)—0\03 3B sey, p(dm—z,q)] (10)
A similar remark applies concerning (3) (4).
The relationships for functions”of order (2rn+148) are derived

from (9), (10) as described abova Wlth regard to (7), (8).
If the functions are de'ﬁned as

Cenn (e +Q) &S00 tm S AGH cos{(2rBz— 1B,
,\{“z rzw—co (}])
seg,HB(z }g) = seclﬁw E A@# B ginf (2r 4 Ble—1Bn],

then for ¢ & 0 the substitution (1x—-z) for z yields (11), but with
(—1), W'i}hm the sigma sign (see(7) and (8})). Although the functions
deﬁQ&d thus are well suited for tabulation, since cey, +g{z, —q) is then
eq‘ua,l to cey, g(3m—2,q), they have the following disadvantages:

‘{a) they are neither odd nor even, ($) they do not reduce to cos(m--£)2,

\ / sin(m-{-B)z when ¢ —> 0, (¢) they are more complicated than (1)-{¢),

(7), (8). These comments apply also to (5), (6).

As in §3.21, all the above series may be proved absolutely and
uniformly convergent in any real closed interval 2, <2<z, orin
any closed rectangle of the z-plane (see §4.77).

For the pairs of functions (1), (7); (2), (8); ete. the iso-f curves
are symmetrical about the g-axis of Fig. 11. No two of these inter-
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seet; for if they did, the equation would have more than two
independent solutions corresponding to the point of intersection
{a,q), which is impossible. If 8 = p/s, a rational fraction less than
unity, , s being prime to each other, and z is real, the function has
period 2sm, 8 = 2. When g is irrational, the function is not periodie,
and tends neither to zero nor to infinity as z — +w. By appropriate
choice of (a, g) the function may have any real period 2sw7. An argu-
ment akin to that in §3,25 may be used to show that the charac-
teristic numbers and coefficients are continuous in ¢.7

Modified functions of fractional order. These are solutions of (1),
§§ 2.30, 2.31, respectively, being defined as follows:

C age © aig @ OUD
Sensg —iSeupg | "
The series representations may be derived from aboye; by wrltmg
1z for z. m\‘

4.711, Behaviour of the coefficients as § »O0and 1. Consider
a point (a, ¢) in a stable region of Figs. 8 or lls}éétv. een dy, and by,.1;
then 0 < B < 1. With ¢ > 0 fixed, let a@n be approached so that
B 0. Then by § 4.17 o)

CCap fﬁ(za Q) - cez;;(z: Q)::“ éezu-rﬁ(& Q) i 0-: {1)
80 we must have NG
ARB) 5 APt 1A§N\ ArHB) 5 A8, by, 4 g > Goye (2}

Similarly, as § > 1, \\

85,42 Q) = 80541(%: @), ey g% 4) > 0 (3)
—A(%’tﬂ) > AGHH 5 LBEMY a8 Dyt (4)

For (a,q) bet@zeen gysy a0 gy, 38 f >0,
062n+1+,8{z g} — Ceg, 1(2,9); S€pp11+4(% @) 0; (8}
) A(-?n:t-l+m - A(Wr_l“s} AP @y 108 Contae (6)

As B 1

Se2n+1+ﬁ(z, q) — 332,;.+2(3s q)s 002n+1+,8(zs g) > 0; (1)
AR . AR JBED, A 0 g e

* 2 0 except in (2), where 7 = L.

t They are gingle-valued also.
4961 o
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4.72. Normalization of ce,, (2, 4), sem_é(z, 7).
19, 8 = p/s, a rational fraction in its lowest ferms. Since the fune-
tions have period 2s7, we take

Zim : 28T
1 1 '
— f cel, g(z,9) dz = 1, = j sef, (% q) dz — 1. (1)
9 ¢
Inserting the series (1}-(4) §4.71 in these integrals leads to
i [Aiz-n+ﬁ)]2 — § [A(2ﬂ+1-i‘,3)]2 = 1. (2)
2°, Ban wmmfmal number, 0 << 8 << 1. Ifin (1}, s > —i—oo (}) fol—
lows, so we normalize accordingly. O\

Comparison of (1), (2) §4.16 and (1), (2) §4.71 shows thal we may
write A = Ke, ., where K is a constant. Thex ﬁiom (2) we get

K2 E d, =1; soKzl/[st]. (3t
If the ¢ are found as 1n§5 20 et seq., Kmagkbe computed, e.g. § 5.311.

4.73. Form of solution when g “—Q DAt the intersection of an
iso-f§ curve with the ¢-axis in ¥ig, Mg = 0. Then

@ = m4-Ad = (m+B)2,
m being the order of the funebwn whose characteristic curve inter-
sects the a-axis at the pomﬁ % = m2. Thus the differentiat equation

reduces to 'fl +(m+ﬁ)2y =0, (1)
whose formal soluf\é\ns are cos(m+ )z, sin(m-+ f)z.

By analysis akin to that in §3.32 it can bo shown that as ¢ > 0,
all the 4 in (1)3 (2} §4.71 except AE*tH tend to zero. By §4.72
A@ptB — L\When g = 0. Asimilar conclusion applies to (3), (4) §4.71.
Hence @heén ¢ =0, the functions of fractional order become
cos(m Y2, sin{m-B)z, so ( 1) is satisfied,

4 74. Formula for B [134]. When the parametric point lies in a
s:table region of Figs. 8 or 11, formuls (6) § 2.16 may he adapted to
caleulate 8. When g > 0, if the curves bounding the region are &,
(lower), &,,,; (upper), m == 0, we take » = m-+8. Then from (6) § 2.16

R L — (5V2+7)
SRR TP YL T v Y
AL 58,2420

" B4 ‘ S+ 0(g%). (1
64(p2._1)5(v2_4)(y2__g}q +0(¢%). ( )

t This formula js valid when 8 is a rational fraction.
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This formula is usable under the condition that |z| 3 |g%/26:2—1),
and that the ratio of each of the terms in g to its predecessor is
small. For a first approximation we have v* = a. Inserting this in
the term in ¢® and omitting the others, the second approximation is

12 = a—q¢*2{a—1). {(2)

Substituting from (2) into the second term on the r.h.s. of (1} and

= ¢ in the third and fourth, yields the third approximation,
namely,

vi = il — (a“_l} 2 ﬂﬂ_qi_
[2(a—1)2= qz] 32(a—1Y{a—4) .
a2+ 58a--29 “—]—() 81 \ \3\)

6 1)a— 4(a—9)"
Sinee »? == (m+B)2, we o'btam (whatever the sign of ¢)
g o @=1) o (sa47) P ~“;.\
- [2{a—1)2—¢?] 3%(a—1)3(a—4)
gaz+58a4\~2€r qs]g_m, "
64(a~—-1 5(&1 4 a—9)
provided no denominator vanishes, If » 1‘1 (m—[—ﬁI) calculated from
(4} 18 fairly accurate, a closer result ma:y e obtained by substituting
v for v on the r.hus. of (1), and regalﬁulatmg V.

The aceuracy obtained fromy(4) increases with decrease in g, a
being assigned. Broadly, forsmoderate accuracy we must have
la/gl > 1. Thus, if ¢ is large enough, ¢ also may be large, e.g. if
@ = 1000, ¢ might be 50y For lower accuracy the term in ¢°® may
be omitted. When #,%q aro such that adequate accuracy cannot be
obtained with (Q"the procedure deseribed in §§5.11-5.14, 5.32 may
be employed. \

4.750, Gonjugate properties of the coefficients, p real, (¢,9)
in an ouns\table region.

1°. 'When (¢, 9} lies between by, and a,,, the recurrence relation is
[@a—(2r—ip)leg,—q(Cgr 12T Car2} = . (1)

Writing —r for r, (1) becomes
[a—(2r+ip)2le_gr—q(C_gr-atCaria) = O (2}

$MCe @, g, ;e are real, it follows from (1), (2) that ¢,, and ¢_,, expressed
m terms of to {real) are conjugate complex numbers,
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29, When (a,q) lies between by, and @,,.,, the recurrence rela-

tion Is [\‘1—*(2?"&'1—3'4”')2]02:4.1_9_(Gzr+3+02r~1) = 0. (1)
Writing — (r+1) for 7 in (1} gives
[“_(2'?'+1‘Jr‘“":P~}2]G~-2r—1_Q(C—zr—s‘]r'ﬂ—zrﬂ) = 0. (2)

Suppose that the cy,,; are expressed in ferms of ¢;, and the ¢_,, ; in
terms of ¢_,. Then ¢y, and (¢;fc_y)e o1 aTe conjugate. In §4.751
it is shown that |ce (| == [6_g -1}, 80 |61} = |4}

The conjugate property of the coefficients 1s ugeful for checking
purposes in numerical solutions. If this species of checking is waived,
computation of ¢y, 7 =1, 2,..., in terms of ¢g, and 5,4, 5 —1, 1,

2,..., in terms of ¢, is c;ufﬁclent P

4.751. Alternative form of solution in unstablé i‘egion

12, By 2° §4.70, when (&, q) lies between bznﬂ\aqld @y, 1, the form
of zolution

B) = 0 3 oyt 8y
23

ensures the reality of p. ¥ p = 0, ylﬁ}ozas z—> —o0. Since ¢, ¢ are
real, the ¢ are complex. Then it may)be shown that if z is real, save
for a constant complex multiplien, ‘say Z,, there is a real solution
which tends to zoro as z - —&

NS

Let €ori1 = Lotlg1y Zy = e, 12y} =1
G% iﬂt\l’ d2r+1 = Parii £¥ar 1 (2)
for all ». We shall now demonstrate that d,,,; and d_,,_, are con-
jugate complex( mmbers. Substituting from (2) into (1) leads to
ZgYy(=) = em Z PararlCOS[(2r+1)2 4 oy ] +4 sm[(2r—}—1)z—§—¢2f+ﬂ}
o° 3
For\a real solution, the imaginary part of the r.h.s. of (3) must
W{msh identically. Hence

)™ Poray SIO[ (24 1)24-Bop iy | p_gpey SID[ (27 18— _g, 1] == 0, {4)
and, therefore,
Poray = Pogr-ts and g,y = (b gyt 2sm), (8)

s being an integer. It follows that dy,,, and d_,_, are conjugate,
80 (3) may be written

¥3(2) = 2Z, e”zé:npzru cos[ (2r 4 Lz+dgr i1l (6) |

t By nid of 19, 4.751, it may be shown that (o fe_;) = e¥%.
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The second independent solution is
Yp(z) = yy(—2} = 2Zge = Epzr w1 CO8[(2r++ 1)z —yr iy ]. (M)

Then (6} - 0 as z-» -0 if g > 0, v.hlle {T) = Lo ag 2 > —o0,
Determination of Z,. For all integral values of r

Corry = Zotoe vy, With [Zg] = 1. (8)
Since d,,,, and d_,,._; are conjugate, it follows that
l6gr1] = [6_2p-1l- (9}
Thus we may write Cy.,; = Payey e¥2r21, 6 gy = pa, g €¥-2-1. Then
Z, = affe — ,2r+1,d2“1 = (ﬂ(‘f’erﬂ—‘ﬁanl) {100
=¢ g/l gy = elh—r—1¥p 1 120), li)i

by (5}. Hencc O
= (gr1a— ¢'2r+1 )+ (S!’ 2 1“|"¢’2r+1+25‘”)a (’3‘:

5O 9 == Hhar1 Thap—y )57, .\: (12)

It follows from the footnote in §4.50 that Z, = MyZ;, i.e. Z, and

Z, have equal angles.

2°. When (a, ¢) lies between by, , @;,, by 2° §\ ’?ﬂ p is real if

hM—w;cwm (1)

Take ¢,, = p,, e, o = 2p, real, them for a real solution it may be
shown that p,, = p_,. ¢y = ((;S,,zf} Ssm), s0 if r 21, ¢y, and c_
are conjugate. Also

Jwrﬂwgii ur COS(202+ ), @)

Q
and  yyz) = yy(—Eh= 2 h+§%mw%%w (3)
In this case Z - ..'\ -

4.752, Ex m’ple 1llustratlng analysis in § 4751 We shall
consider the\éutlon of

™

\~.;" gy +(1—0-32cos 22)y = 0, (1)

obta.ﬁlﬂed ih §5.33. The parametric point @ = 1, ¢ = 0-16, lies in an
unstable region between b, and a,. From 2°§5.33 we h&ve

e, =1,
6y = {5:95X10-240-9981);
0y = —{1-994% 10-2+1-188X107%), | @)
g = —(2-3810-3-+1-978 X 107%);
6y =  (1-325x 10-441-24 X 10-5%),
cs= (2024 10-541-313X10-%).

N\
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1°, We find that [¢,| = ‘o], leg] 2= le_gl, les] == lo_gl.
W, {a) =0, P, = tan-1(0-998/0-0595) = 86562,
Hence by (12), 1° §4,751 with s = 0,
By = Heprotdho) = 43287 M
(b) by == tan-1(—1-198/—19-94) = 183-44°,
g = tan-1(—1-978/—0-238) = 263-12°.
Henee by (12), 1° §4.751 with s = —1,

By = Slhg1h_g) —1B0° = 43-28°. (2)
(e} 5 = tan-1(0-124/1-325) = 5:37°, QO
#.5 = tan-1(1-313/0-2024) = 81:25°. L\
Hence by (12}, 1° §4.751 with s = 0, O ;
b0 = dhstb_e) = $3:31° 3)

The agreement at (1), {2), (3) is satmfactory‘ior the purpose of
iltustration,

30, Zy = 43U — 0'7284—%’6863'
40, dy = c,e~B% — e*mg i '
d_y == ¢_ e 82 e._,_ v a8 conjugate. (1)

= ¢, 6“43 28; . |c |p140160 \

d e 3{43 50 |, Jerrveai | conjugate. 2)
d, %5—43 s
d O ¢ gt o o130 } conwgate. (3)

As an exerehe the reader may check the remark in §4.750 that
€y, a0A (317%‘_1}0_2,._1 are conjugate.

50'.&\” oy =1, ¢y = —43-28°;
:,\..f';" pg = 2x10°%, $; = 140-16°; ()
o\ ps == 133X 104, ¢, = —37-91°,

By 1°§5.33 p = 0-08.
62, T“ ¢ approximate independent solutions of (1) §4.752 are
#z) =~ 220""“[ Eﬁpar-n 005[(2?’+1)z+§62r+1]} (1)
and ”

92(7) = yr(—2) = 22, ool i Prre1 00S[ (27 1)z— g 1a]]. ()
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By combining these linearly independent solutions, we obtain the
even solution

(yz ) = cosh pz 2 Pari1 00‘“(2?’4‘ L}z eos gy yy —

—sinh pz ZﬂParﬂ sin(Zr+1)zsing,, ;. (3)
and the odd sclution T
1

2
(1 — %) = Fy == sinh uz Z Par11 COS(2r+ 1)z 008y, —
4Z, #=10

3 ,
—~cosh pz Z Porr1SIN(2r+1)z8In gy, (4)

In practical applications (3}, (4) have the disadvantage that' Sotfz
tend to infinity with 2. \

4.753. Formula for x when ¢ << 0. u may be calculate&for (2,9)
below @, in Figs. 8, 11, by means of {4) §4.74 with fe= 0. Then
p = —if. 'The remarks on aecuracy in the last pasagraph of §4.74
apply here also, As shown later, (7} $4.91 may. he‘ used when {a, g}
lies in an unstable region between b,, and am,\zn > 0.

4.760. The iso-u curves in Fig. 11. Cehgider the segment of any
line between the curves b, par@}lél to the a-axis, ie. in an
unstable region, The: conventmn 0f'§4 70 ensures the reality of u.
On b, and «,, u = 0, while at sdme point on the segment of the
line, u attains a maximum valte. This is true also for points on
the segment of a line p&rallelx\to the g-axis and terminating on a,,
Thus if the turning- pomNheareat the - a)us) on an iso-p curve is
§ = g,, there ate two malltes of a for any ¢ > ¢, on the curve. More-
over, the voeﬁiuents 1 the solutions corresponding to the two a are
different, e‘(cept\’at the turning-point. Ne two iso-y curves intersect
for the reasoristated in §4.71 regarding the same property of iso-8
curves. The\iso-u curves are asymptotic to the characteristic eurves
b @, Whith bound the unstable region where they lie, and they
haVeﬂ;{o Jlinear asymptotes.

If the numerical data were avallable, families of iso-p curves akin
to those depicted in Fig. 11 could be plotted. Tabulation of a, af,
7. # would permit the value of the latter being found immediately,
or by interpolation. The solution of an equation with (a,¢} in a

‘charted’ unstable region would then be completed by computing
the coefficients in (1) or (3), 2° §4.70, using the procedure in 2° §5.33
and §5.34
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4.761. Functions of order m-u, ¢ positive. When (a, ¢) lies in
an unstable region between by, and a,,, we define the functions of
order (2n-+p) by aid of (2), (3), 2° §4.751. Thus

ceu2n+.u,('i".z:g) = K({i}LZ{Pﬂ_{_ r‘z—‘lpm 008{2?‘2:&9’)2:‘)} (b2n-:--p)' {l: 2)

For the region between by, @g,yq We use (6), (7) 1°§4.751, so

OBy 41 (2,0} = Ky e > o 008[(2r+ 12 o] (Bonsaap)s
) r=g (3, 4)

where K and K, are normalizing constants defined in §4.764. The
above forms of solution are preferable in applications.to those ab
{3}, (4), 6° §4.752 for the following reasons: N, :

(i) One solution tends to zere, the other to infinity ‘W1th z, whereas
the even and odd solutions both tend to 1nhmty \\rlth z.

(ii) In numerical work, tables of e*, e~* are, lmj;’ter $0 use than those
of sinh z, coshz.

(iii) Analytical work using (1)—(4) is Aikely to be simpler than that
involving the even and odd solutlons\

It is of interest to remark that(if We substitute

(A(2n+1ﬂm+A£2n H'l"')) = Par11 008 Popsns (5)
and --iZ 1(_A(2n+1—1pt) A(2n+1 i) == po s SN oy, {(6)
in the r.h.s. of o

ce .‘~\ o
Y A@ri-i ©89, 4 1 gy, (T, 8T
(EE 2n+}k\p =2~: i ®in ( T i

the r.hs. of (&) (4), 6° §4.75% are reproduced, with » = 0 to 4%
Since p ig ¥eal, 2n-+1—ip is complex, so (7), (8), and the corre-
spondmg functions derived by writing 2m, 2 for (2n+41), (2r-+ 1),
respeotiv -ely, may be designated functions of complex order.
wDiscrimination between solutions for the same q but different a. We

pnd :Tefer to §4.760. On the upper and lower parts, and at the turning-

point of an iso-p eurve, we use the symbols
. : {
cell,, g, COUu.,, OCU,yy, respectively. (%)

For example, if {a,q) lies on the upper part of the curve between
b,, and a,,, we write

Collyy yz{t2,¢) = K‘?’ipzlpn“f‘ 2 PAr‘JOb(Zf"z:I:‘;zf)} (10, 11

T The r.h.s. of (7}, (8) are the series for cey,,, gz ¢) and SCpnirralss 9 with —ip
written for §. .
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Symbolism for solutions with the same o but different ¢ may be
devised by the reader,

4.762. Degenerate forms of (1)-(4) § 4.761. If o remains
constant as (@,¢} moves towards a,,f in Fig. 11, 72— 0, and in
(1), (2) §4.781 Kpy— AP, K5, — A@™ and &, -0, r = 1. When
£ = 0, by proper choice of K, we obtain ce,,(z,¢). As (z,¢) moves
towards by, x> 0, and py—> 0, Kpy, — BE, $o, > —3m, r =1, 50
with u = @ we get tse,,(2,¢). Similarly the degenerate forms of
(3), (4) §4.761 are ce,,,4(2,.9) and *se,, . (2,9). These forms may

also be derived from (3), (4) 6° §4.752. N\
4.763. Functions of order m+yp, ¢ << 0. These are defmed@s
follows : £\

2%, g
= (1Kot 3 (1 pantl3 T )

celly, ., (+2, —g} = (—1)"eFi™¥ ceu,, , [+ (Fr—2), 9] (53’%}.{;).

N (3, 4)
ceuz""'l‘*‘!-‘-{j:"" _-9') = (_l)ne‘kar.u. ceuan+1+p[ s{\’.7’” z) g] (a2n+1+;a)
{5, 6)
= (—1)"K; e**“Z( "l}rP2r+1 sinf(2r+ 1)z T opaa)-
(7, 8)

The r.h.s. of (7), (8) may be expressed in a cosine series by altering
the argument in[ ] to [(Zz‘%l)z—gw:{:qﬁgrﬂ] The definition would
then be in keeping witht bht‘ ‘notation cen. When & = 0 in (3), (4),
(7), (8) the functions degenerate to cey, (2, —g), 5¢a,. (%, —q); When
=0, we get —rseg,l(”z,-—q), +-cey, 1q(2, —7), a8 may be expected
from Fig. 11, whete g <t 0. The multiplier {(—1)" ensures that the
signs of the degarierate forms are in accordance with the definitions
n§2.18, pm\‘}t ed the upper signs are taken in the case p = 0.

4.764: \Normallzatlon The rules must be such that the degene-
rateﬂ@l‘ﬂls of the functions are those given in §§4.762, 4.763. Then
We must have

K2+ Spp] =1, or K =125+ 3] 0

2

and K3 i pr.=1, or K = 1/[ § P3r i-l]k‘ (2)

i Fxcapt at ¢ = ?, g = 0, the direction of approach to dy, is immaterial. e.g. in

§4.711 the approach is with g constont.

4906
! )3
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4.77. Convergence of solutions. Substituting (1) 2¢ §4.70 into
Mathieu’s equation and equating the coefficient of ¢** to zero for
= —o0 to +oo, yields the recurrence retation (1) §4.730. This is
a linear difference equation which may be treated on the lines of
§3.21. We find that

|ty | ~ gfd(r+1)2 = 0 asr— o0, (1)
where %y, == Cp,a/Cs,» A similar result is obtained for r negative.
Then as in §§3.21-3.23 it may be shown that (1) 2° §4.70 and its
derivatives are absolutely and uniformly convergent in any closed
region of the z-planc. Hence the series, differentiable teri }} term,
represent continuous functions. They may also bet \:mmrul in-
tegrable term by term. These conclusions are valid “for stable
and also for unstable regions of the (g, g}-plane, bn;mlar conclusions
may also be drawn respecting the solutionfhgiven in §§ 4,761,

£.763, o)
4.80. Solution of ¥"-|- (- 2 cos ’~}1,1 N 0, ¢ very large 7 = U
The eyuation may be wiitten \
¥ tay = (qusZz) (1)

Neglecting the r.h.s., which ,1s'relat1\e ely small, by hypothesis, the
formal solutions are coszatpain zat. Substituting coszat for y on the
rhas of (i) leads to  ~3"

y”—]—ay\ g[cos{at+ 2)z+cos(at —2)z], (2)
of which the p&a{mﬂlm integral is
1 [coslet2)z  cos(at—2)z 3
o —h| TR, (3}
P\ at-4-1 at—1

1.1r0vided\z";# I. Using this for y in the r.h.s. of (1) and solving
dg&u%xthe particular integral has terms in cos(at+4)z, and so on.
He‘nce the first solution of (1) may be expressed in the form

.\: 3

Y= E ¢, cos{at—2r)z (¢! non-integral). {4)

F= =t
If we use sinalz and proceed as above, the second solution is found
to be

Yy = 2 ¢, sinfat—2r)z. _ (5)

Substituting either (4) or {5) in the differential equation yields the
recurrence relation

[a— (@t —2r)%e,—qle, ,+e,.)) = O, (6)
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or 4r(at—r)o,—g(Cpq+Cppy) = 0. (7
If o} 3 #, we get the approximate relation
46, — (qJad) ¢,y F+0ysy) == 0. (8)
As in §3.21, for convergence of (4), (5) we must have ¢, — 0 as
T > =00,
Now a recurrence relation for the J-Bessel function is
Ard(u)—2u{_y+J ) = 0, (9)

and since J,~» 0 ag r > 400, ¢, = constant X J,.. If we take the cons
stant to be unity (for simplieity) we get

¢, = Jlg/2at). '\"h())
Wken g/2at < r, the B.F. may be represented by the hpst term of
its expansion, so ¢, ~ {(g/4at)/r! giving cfe,_, = g/4m* “Thus the
coefficients decrease with increase in r and ma,y»“be‘ neglected if

r>>r, where ot r, Accordingly, approxiniate solutions of
Mathieu’s equation, subject to the condltlom a\\vcrv large 3 q = 0,

@ 1, are ..\
Z J{q/Za% cos(a*—.fr]z (11)
and }: g (gfza%}sm(a%—zf)z (12)F

Henee the approximate complctt solution with two arbitrary con-
stants is .\\
Yy~ ‘4?,*;[#-}_3'yz = z J(q/2a%}cos[ (@t —2r)z—al, (13)
s r=—1t,
where ¢ = (A2-{§Bﬁ)*, « = tan—1(B/4). Since (13) i3 bounded in z,
the point (a\q)\must lie in a stable region of the plane {see Fig. 8).

4.81, T};nsformation of Mathieu’s equation to a Riccati
type, ~\\ rlte ¥ = e“f“ &z where p == at, and w(z) is a differentiable
futetion of 2. Then

dyfdz = vy, d2y/dz? = vy(dw/de+vu?). (1)
¥ we put [1—(2g/a)cos 22] = p? Mathieu’s equation becomes

of formulae {6), {7},

T If r covered the range —oo to +oo, it is ensy to show by aid (12) would be

P. 42, veference {202], that tho respective representations of (11),

eoy .
S;’l o (z - 2‘%8:11 2:;)] "Phis form is obtained at (7), {8} § 4.81 by & different method
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y'+aply = 0. Using the above substitution it is transformed to the

Riccati type [133]
Fdw, ay oy, @)
v dz

since y £ 0. Now if @ > ¢ = 0, @ being very large, the first member

of (2) may be neglected, and we geb

w= fip = :i:i(l —~1—qcos Qz)% (3)

q N
~ :l:’i:(l —Zcos 2z). . (4)

@ O\
2 N\ .
Hence v [z = Lo (z”':ag&""i“ Q'Z)’“ (5)
: _ _ ﬁ;‘i’

and, therefore, ¥y = ev fwdes e_—];?,wa[z—(qj‘zu)sm’?% N ()

Then by the theory of linear differential @y:ations, we may combine

the two solutions in (6) as follows: _{ &
Yy o %_{eia%[z ~(af2dsin 2] 1 e—ia*[z—(:;ﬁia)fin = cos [g,s (z — 2_% sin 22)] ,
8 7)
and SN (
yy = 1 feitte—lgfsin Bl inliz—alarin ) — gin|at{z — L sin2 )] .
% % 20
o) - ®)
Combining (7), (Swith two arbitrary constants leads to
y\——»- “Egl—i—ﬁyz = (' cos [ai(zﬁ—q-sin Zz)——&], (9)
P\ 2a
Where’:l@,\.r: (A4 B3, and & = tan~Y(B/4). Expanding (9) gives
‘x:__, 7 g . - . g . N -
N :\y vl [cos(—iﬁ gin 2z)cos(aiz—a}—|—sm(-%—}sm Qz)sm(a?z~oc)]. (10)

flﬁxpressing the first factor of each member of the r.h.s. in B.F. series
[202, p. 42], we get, with & = (g/2a?), which may be > 1,

Y~ C‘{[Jo(h)—P-Z i Jo (h)cos 4?‘2]008(a.§z_.&)_;_
¥ =1

+[2 §0£,+1(h}sin(4r+Z)z]sin(a*z—&)}, (11)
0§ Jihcos[iat—2rye—3) 12)
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This has the same form as (13) §4.80, but in (12) the summation
covers a doubly infinite range of ». Owing to the rapid decrease in
J(h} beyond r = 7, a finite range of r is adequate in applications,
The approximate solution of y"+ (@ 2¢cos 22)y ~ 0 is obtained
from (12) by writing —A for k. Since J(—k) = {—1).L(A}, we get
gy Z (— 1y th)cos| (at—2r)z—&]. (1%

P=—r0

Ar in §4.80 the point {a, ¢} must lie in a stable region of Fig. 8.
4.82. More accurate approximate solution of
y"+ (a—2gcos 22)y = 0,
The sclution at (9) §4.81 is a circular function with perlodlqarfy
varying argument, but constant amplitude factor €. We shall now

derive a closger approximation in which the a,mphtude Sactor is
periodic in 2, We start with (2) §4.81, and assume th;uﬁl%]

1 1
= — U — 2 1
w = Wy gyt * N {1
the w(z) being differentiable functions of z: fI‘}}en

2 1 ‘
w? = us§+;-w0wl-f-;(?;.%;}fzwu?vg)—[—..., (2)

]. dw .]. r l‘v :::: ) ]- ’ ¥

e g 4 T T YL E 3
vdz vwo_bﬁ "1"—”3 2 )

Substituting (2), (‘3) into (2{~§4 .81 gives
whtpt 42 (wu+mwl)+ Lt wg) o = 00 (4]

Fqua,tmg the coefﬁQlen‘os of 0, v1, »-2,... to zero yields

A0 =0, (5)
.‘. \ w’o'F"zw.)wl - 0: (6)
\\ ) whFudd-Qwwy, = 0, (7)
N S '
From (8),  wy = ip, sov [wyde = div [pd= (8)
From (),
Wy, = 1 E" so | w dz= —= J. du °+constant
2w,

= log Awgt = log(dp~*)Fimi.  (9)

N\
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From {7), et l[wp 3w
G W TP ) P R

_ - _"i L ra
- ‘F'Sp&(gpp 310 ):

2 . 4 ‘ f__ o 12
50 }"fwﬂ d — :F_'.”_f (@¥P—)dz. (10)
v 8y P
Then by (1), (8)—(10), if |&| 3> 1, la] > |2¢{, to a second approxima-
tion QY
= = "
vfwdz s gy J‘ pdz +10g(Ap—1):F}mq: f (2PP\ de )dz
WP
| a
Hence 2D
2 ¥ fwdz 4 ia‘}fjj}%p’ —3p2)Bap dz
@IvE o Bed (constant)p=te N\ ¢ , {12)
- . A \,/
the factor e i being absorbed in the gonstant.
Combining the two solutions as in‘§4.81 we get
y Mgy~ conbtau’b P_; o [a} f (z) dz], (13)
P

where ¢z} = p—(2pp” ~—3p’2);8ap Then (13} are independent solu-
tions of ' +aply = Q‘ A representative graph is given in Fig. 104.

Ifa>1,a> Qq\\ 0, both real, the solutions (13) are bounded,
so the point (z{g) must lie in a stable region of Fig. 8. If [a] > 1,
le| > |2¢|, 2 the argument in | ] is imaginary or complex, the
solutiomé\’é}é' unstable, so {a.g) then lies in an unstable region of

Fig. §20
Qmiitting the terms in p’, p” in ¢(z), we get
. \ : 5 2
V i at f PH(z) dz = J. (@ — 2q cos 2z) dz
b 8

= {a+2¢)} J. (1—A% cos®u)t du
L1}

= (420} BQ, in) —EQ, in—2)]
= (a4 29 R E, (A, 2), (14)

where E(A,z) is an incomplete elliptic integral of the second kind
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with modulas A = 2[g/(a-+2¢)]* << 1. Then we may write (13) in

the form
gonstant cos

n ~
= G oo i FAEOAL 09

+(-025 4

(A) o

=025

(C) 0

-0-025 fig
\“.

Fic. 10 (a). ﬂé{veq showing combined amplitude and frequency modulation
sea (13) § 4.42 and (4) § 15.25.

When 1291\> la| the approximate solution of Mathien's equation

may Bederived as shown in 2° §6.20, _
The argument of the circular functions in (13) is periodic, so the

fl'equency of repetition of the function fluctuates. 14 is defined to be
14 :
= Wil = e = 2R E (A, 2)
=l =4 dz[(ﬂ—l- grE A, 2)]

= %(a-{—?q)’-’(l—?@ cos?z)d {186)
~T
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Th;} “periodicity’ or reciprocal of the frequency is
1)f = 27/(a+2q)}(1 —A% cos?z)}, (17)

which differs from that when ¢ = 0, namely, 2na—%.
From (15) the ratio (maximum/minimum} amplitude factor is

[(a+2g}/(a—29)]*. (18)

AL YNNI HITHIIY
AL AL 24
(A) ? it ’1!11111111111! |111!ltl1‘rl|'1 [W‘ I‘l‘ ‘_';'[l,' .1,1'1'1'1'1‘1' 120N

A

W 4

1
E£=73 % Ny

LA A ’
® l'llillll| \';'ﬁ l|| w“ il ||\‘|'ill,lll'l‘l‘lll'l'i'l‘l‘l

€= %

S

&

«
1 I

(c) St i‘ h \ ||i|i’l'1'n'nli‘n'n ¢
&P H

4 .\‘ 3
<\; o Fro. 10 {8). As at Fig, 104, bot for the derivative, cg. I {tyin (9) § 15,28,

.4.83. Equation of the type y"+ 2y +(G—2qcos22)y="0
Assume that «, d, ¢ are real, with « > 0, ¢ = 0. Substituting
¥ = e*u{z) into the equation, we obtain the Mathieu equation

#" 4 (e—2gcos 22y = 0, (1)

with @ = (@—x2). If the parametric point (a,¢) lies within a stable
region of Fig, 8, the solution of the original equation takes the form
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{see (2), (5}, 1° §4.70)
) = e 3 ey cos@4Bl or ¢ 3 ¢y, cos(2rF I+, (2)

and

¥olz) = € Y ey 8in{2r+-B)jz or ex° E Coppy BIN(2r + 14+ B)z
P — y=—

(0 << B =1, Breal). ()
The solutions (2), (3) are proportional to e~*ce, gz, ¢) and
e*se,, (2, q) respectively. These may be regarded as damped
Mathien functions of fractional order. ~
If (%, ¢) lies in an unstable region of Fig. 8, the solution of (1} takes
the furm at (1) or (3}, 2° §4.70. Thus the solution of the ougnml
equation is given by \ O
ey ) N
91(2) — glp—xk z Cap ezl qp  plp—wk z Copr1 QLZ:'J 10 (4)
. r=—wc o\

P ==

ahd
[-a]
Yalz) = e fpbed 2 Czre_gm': or eg-{ptas 5}321'+18 —@rslat ()
pP=—a

S
#, Is stable and -+ 0 as 2 -» +o0, if « >',a\,
#; 18 unstable and — 4-c as z - —jfoé;if 0 =5 e < e
# is neutral and periodic witl} pﬁt:gi"i(;d mor 24, if k = p == 0.
#y i stable and — 0 as z -> —4—0@ in each case.

Conditions of solution are asstioted (sec 2°§4.70) such that p is real.
U it is complex, R{u) is, to‘be understood ahove; also z is real.

4.84. Iso-8u stability chart This is illustrated in Fig. 11. The
is0-8 curves lie inyth® stable regions for Mathieu’s equation, while
the iso-g curves'\Lié in the unstable regions. Each iso-8 curve is
smgle value m\‘g, but except for the region below ag, each iso-u
is douhle- val\ed in ¢. For constant g, g at the turning-point of the
is0-4 Culve increases with increase in @, eg. if p = 0-1, ¢ = 0-21
wheprn'et I, but ¢ ~ 1-3 when o =~ 4-22.

‘Sﬁ’pose that in (1) §4.83, @ = 1, ¢ =~ 021, then (g, g) lies on the
150-4 curve @ = 0-1 between b, and «,. Thus the solution of the
efuation is unstable. Referring to the original equation, if « > 0-1,
the solution is stable and tends to zero as z— +-00. Since (1,0:21)
lies between the characteristics for se, and ce,, by 2°§4.70 the solu-
tions take the form at the extreme right of (4), (5) § 4.83. If « = 01,

(1~x) = 0, 50 one solution is periodic with period 27, while the other
4961
0
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- 0asz—»> +oo. Theiso-u curve u = 0-1is its characteristic or houn-
dary curve separating the stable and unstable regions. Thus for

y "+ 02y +(G—29e08 22)y = O, (1
the stable regions are larger than those for Mathieu’s cquation, by

| / & |
6
N\
.x:\"
7NN ¢
': 3 5 6
0.\.,,__\ Values of ¢
I e, DN -
%

e’
RN
\’\0'3 ét
M=l ey

Fra. 11, Iso-fu stability chart for Mathien funetions of fractional order.
The iso-# and iso-u curves are symmetrical about the g-axis.
the areas included between the iso-u curves u — 0-1 and the by, %

curves to which they are asymptotic. The range of pis —eo < pp <
if positive it is 0 < p < 0.

4.85. Solution of y* {2y’ +(2—2g cos 22)y = 0, when @ > 2 > 0.
@ > k% We assume that the point [(G—«?}, ¢] lies in a-stable regio?
of Figs. 8 or 11. Then by §4.83 y = e—*u(z), u(z) being a solution of
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{1)§4.83. Hence its value is gi{ren by §4.81 with @ = @—x«2. Accord-
ingly, with %, = ¢/2(d—«?)¥, we get

y =~ ﬁ Jo{hy)e= eos[{(G—x)E—2r)z—a, . (1)

4.86. More accurate approximate solution of equation in
§ 4.85. It is evident that the required solution may be derived on
writing (@-—«®} for @ in (15) § 4.82 and multiplying by e-*2, Thus we get

[(@—x2+ 290 E (A, 2}, (1) ‘

where M —= 4¢/(@—«2+2¢), and the conditions respecting (@,q) in
§4.82 obiain. In the foregoing cases, when ¢ is negative the solu‘tifaﬁ
is obtained by writing (§7—2) for z in that already given, exceptmg

7°%a

the exponential index, <

4.90. Solution of "+ (e—2gcos2z)y = 0 inan unstable region
of the (a, ¢}-plane. In §4.12 et seq. the solution Wasshown to have

the form e (2), }\\\ 0

Y10 _

0 T emweg(—
Now ¢(z) is periodic in z with ‘period = or 247, g0 it can be expressed
in & series of Mathien functions sezp, By, OF 8By, 4y, C€yyyp. In
accordance with 2° §4.70, for {a, ) J\in an unstable region between
the curves b,, and a,,, we write,

a constant e~** cog
(B—x2— 2g cos 2z)} sin

¥ (z) =
2

Be) = 3 008, 5, 0) Sy 52, ) @

n=
and for (2, g) in an unstdble region between by, and a,,,, we write
¢(z) =%0T0213 4+1CCap41 (2,9) +Szp +1 sezpﬂ(z, Q)]* (3)

the €, § bein&’ﬁé%ermmablc constants. Putting r = 2p or 2p+4-1,
ag the case m'a}r be, our proposed solution takes the form

O Py = gaee 3 [0 e, 9) 550, )] @)
;o Y =0
Substituting y,(z) from (1) into Mathieu’s equation yields
$7 42+ (k-2 c08 22) = 0. )

From (2), (3) with » = 2p or 2p-+1, assuming uniform convergence,

$"(z) = 2 (C, cep+S, sey)

fj [C{2g cos 2z—a,)ee +-8.(2q cos 22— b, )se,], (6)
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where a,, b, are the characteristic numbers for ce,. sc,. respectively,
corresponding to the value of g used in the equation. Also

#0) = 3 oo+, 7
p:
Substituting from (2}, (3}, (6}, {7) into (5) leads to

Y [C{2¢ cos 22—, Joe,+8,{2¢ cos 22— b, )}se, |4 ?.p, 2 (¢! cer=-8, se }-+

(a4 ud-- 2q cos 22) E (U, ce,+S,ze,) = 0. (8

The series being assumed absolutely converg,ent (8) may bt Written

i (a' a’r"}_ﬂg)(e —{_ E S (E b _i_F- )%e f‘...«p, z {(/ L"&‘:,v—h[ se ) == ),

n=0
¢ ‘~f;, {9)

Multiplying (9) by ce, and integrating with r(‘{»peot to z from 0 to
27, by aid of §§2.19, 2.21, 14.42, we get \/

a\,/

nC{a—a,4 p2) -+ ‘u,f Z S,;se,’.ces dz = 0, (10)
or Cyla— as+p2)+2p ES K, =0, (11)
v‘ Y o
where Ky, = J. g6, 08, dz.
a

Multiplying (‘)Kbyﬁe and integrating as above leads to

LI

er{a—- ) 2#_’. Z C cese, dz = 0. (12)
x\" 2 .
By (.}~K§,\I4 42 j ce.se, dz = — f sejce, dz = — K, , and by virtue of
Eliﬂfol‘m convergence (12} may be written
\\3..~ o (a—b 4 p?)—2u z C K, =1, (13)
n=0
80 ﬁﬂr(a“br"i';‘-‘z}ﬁgf"' Z Os hrrs = 0’ {14)
i=0

with s = 2j ar 2j4-1, as the case may he. Writing m for s in (11} and
substituting for §, from {14) yields

wgqn(a_&?!l+pz)+4ﬁz g ji [Oshrrs Krm:’r(u'“br'{".’*‘;)] = 0. (15}

#=0 f=0
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The eliminant of this set of equations is—in effect—an equation
from which g may be determined (compare (3} §4.20).

4.91. Approximate solution when a > ¢ real > 0. In this case
we see from Fig. 8 that o lies in a narrow unstable region wlere
b, <a < a, Itis to be expected, therefore, that the dominant
terms in (2), (3) §4.90 will be of order m. Accordingly as an
approximation we shall take

96(7"} = Om (:em(z, g) +Sm Sem(z’ g)? (1)

the other €, § being assumed negligible by comparison. Then hy \
(1) and (1) §4.90

O\
(7)) = e, ce,(z,9) +8,.8e,(2,9)] O {2)
and 92(3) =~ e—pﬂ[o‘m cem(z: g) _-S;n Sem(zr Q)J R N (3)
Fhus (15) § 4.90 may be written \‘ '
Om[#2(a_am+#2)+4P2-ngm.{(a'_bm+1‘<2u = 0. (4)
Now €, 7 0, so (4) gives \‘\ !
4 2 ‘5 \ 4
‘%K?znm_l'(“‘_a'm_i‘fiz)(a_gbm*'lu'z) = 0. (5)
Neglecting 14, on the assumption t},re.it' [#] € 1, we obtain from {5)
= (=)o s Kb 2020, (®)
ST

When ¢ is small enough {;\Y' §§ 3.32, 14,42 and tabular values of the
coelficients 4, B [95] we find that K2, ~ 7%m?, while
:‘:\ . (Q'Q_a'm'_bm) < 4m?.
Henee we nmy@;?ﬁfess {6} in the approximate form
O w - a)e—b,)) 2. (@)

In Fig. 49y (@, —a), (#—b,) are the segments of the line a,b,. Their
produét™is a maximum when ¢ is the mid-point. Then for an
assigned ¢

! fmax = (am_bm).f'r'hn' (8)
By virtue of this property, when g is smail enough the turning-point
of an iso-u curve occurs approximately midway between the bound-
ing curves for the region, i.e. by, Gy, OF banyys Gaqpy 88 the ‘cas? may
be. Also, when g is small enough, the series for ,,, b,, In §2.151
may be used in computing u, as exemplified in §4.92.
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To the degree of approximation in (1), equations {11), (13) 3490

become Oy — gt p?) 208, Ky = 0 (9)
and (@bt p2)— 2,y Koy = O (10)
In particular when s = m, we get

7O (@~ p*)+ 208, Ky = 0 iy
and a8 (6—b,+u¥)—2ul, K., = (12)
From (12) Sy = 2uC, mm/W(ﬁ—bm+#2)- (13)

Value of @

~
O
S
0 A
:. D Values O'F g
I‘IG 12. Illustrating caleulation of §, p.
Substltukmg for 2uK, ./ from (5} into (13) yields
O 8, =0 w)% (14)
."{" (a bt 12
\Substltutmg for p from (5) and for 8, from (13) into (9}, we obtain
0, = ~0O, Ko & —-a——,u. (15}
K. N\a—a+4u2]
Substituting for p from (5) into (10) leads to :
) (a byt )
8 = (@n—a—ple—b,tpf)lt (16)
g e

Tn (15), (16) it may be remat‘ked that s corresponds to v in {4) §4.90-



492] FRACTIONAL ORDER: SOLUTION OF EQUATIONS 103

4.92, Example. Find a first approximation to #,(z) for the
equation y”"+{1—0-32cos 22}y = 0.

Here ¢ == 1, ¢ == 016, and the point (a, ) lies in an unstable region
of the plane between the curves b;, a, in Fig. 8. Then from (2), {3)

d61
§2.15 by ~ 1—q—3g? (1)
and ;= 1+g—3g% (2)
Thus

g6} ~ 1g?,

IO AT o a—alab) = it = )

{a,—a) ~ g—3¢%, :
Hence from {3} above, and (7) §4.91 with m = 1, we obtain

P ddg = £008, RN

which is the value caleulated in §5.33 using an enmrely dffferent

method. ~
Substituting for the various quantities in (14} §4, 91\\\ ith m — I,

we have
~ o Q33 _ o (180
e 0‘(9—# %qzﬂq”) B OI(TI%?)
=~ 0-84C.1 (5)
Substituting for g, S, ¢ in (2) §4.91 gures a first approximation to
#1(2), namely, \
yy(z) =~ () "% ce,(z, QIB)—;—O'M se,(z, 0-16}], (6)
() being arbitrary. Also writin@ ;z for 2, the second solution is
Yql2) ~ e—ﬂngc%(z 0:16)—0-94 se,(z, 0-16)], {7}
and the complete solutwn\mth two arbitrary constants is, therefore,
Yy o= Ae—"’”{?[ceIHO 94 se, |- Be? % ce, - 0-94 se, |, (8)
the constant C; being absorbed in 4, B.
4.93, Sol ‘ti;(;\i{‘of y"+{a—2qcos 2z)y = flz). Thisis given by (13)
§6.22 to Wh{ch section reference should be made.
4-94{ Sslution of y"+ 2wy’ +{3—2q cos 2y = fi2). The substi-
tuti&ng == g~*y(z) transforms the equation to
"4 (a— 2q cos Zz)u = e**f(z), (1)
With 6 = (3-—x2). Then the solution of (1) is given by (13) §6.22.

If ¢ < 0, or if cosh he written for cos, —o0 < g <C o0, in this
section and in §4.93, the procedure is first to obtain the solution

with the r.h.s. zero, and then use {13) §6.22.
T The sign of this term is that of (13} § 4.91, where we assume p is positive.
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5.10. Calculation of 8, u, with ¢ small and positive. Provided
a = m?, (4) §4.74 or (2) §4.23 may be used. Also (14) §4.30, or one
of that type suited to the region of the (a.g)-planc where «, g lies,
is valid for a integral or fractional, provided ¢ is not too large. If
an is0-Bu stability chart of the type in Fig. 11, but 2 or 3 feet square,
and covering a greater range of @ were available, 8, u ecould be
obtained directly. If at and ¢ were plotted, the verticdh spacing
would be more uniform than that in Fig. 11, while mterpohtlon near
the at-axis would be almost linear. Tabular values.g of at, g, and §
would serve the same purpose and facilitate 1n‘r{,rpolatmn

. Calculate B for y"+(2—0-32 cos 22}y = N "ﬂ‘ere = 2,q="0186
and the parametric point lies in a stable regioh'of Figs. 8, 11, between
a, and b, TFirst we obtain an apppéXimation. On the a-axis
8 = fractional part of at, so taking a;'—x\?, B = 2t—1 =2 (414 This
ig an approximation to B at g = & 16 In Fig. 11 the B const. curve
through {2,0-16) meets the a- a,‘xzs where @ < 2. Thus the correct
value of 8 < 0:414, &

™

Method 1. Using (4 §4 7 and omitting the term in ¢ we get

5 0167 1;><0-1b-
1 7 — 1-9872¢
RN {\S‘ 50168 T 392 J '

8O : B == 0:4097. (1)

As we h"‘l} gee in §5.20, this is a fairly elose result,
M &ﬂ%l 2. We apply (14) §4.30, but have to calculate sin 2¢ first.
Theri (12) § 4.30 may be abbreviated and written in the appr oximate

\ prn
11 : 1
“n2 ] ——g? Ly P 1 P
4g ( 51¢ )cos e q(l il )c

Substituting @ = 2, ¢ = 016 gives

85 , 3,

I Ll—q =
36?8t T
(2}

co8?20 — 251 cos 26— 1585 = 0

1

80 cos 2c = —5-2 or --30-3. 3
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Referring to Fig. 88, we sec that in (3), 6 = —# 18 for the region
in which the point (2, 0-16) lies. Then

cos{—m+2if) == —cosh 20 = — 53,
this root of (3) being chosen since the positive one is inadmissible.
Now |cos2e! => 1, s0

8in 2o = -}i{cos®a— 1} = 15113, (4)
and by {14} §4.30 we obtain
g~ 04085, so f = 0-4085, (5}

where the positive sign is used conventionally. Thus (1), (5) differ
in the third decimal place. In §5.20 the former resalt is shown to
be the more accurate. O\
20, E’z‘rz-mpie Caleulate 8 for y"--(8-25—1-6c08 22)y = 0.¢ (Here
@ = 625, g == 0-8, go the parametric point lies in a stable reglon of
Figs. 8, 11, between the curves a, and b, Then 6- 201' == 25, 80
taking the fractional part, 0-5 is a rough a.pprommatlon\ho the value
of . In accordance with our remarks in 1°, f < 05
Method 1. From (4) §4.74, omitting the term‘%i g% (for purposes
of illustration) ,\
958 — {6_25___ 525x08 @70 84] b
23¢5-25%—0-64.% ‘“32><5 258 2-25
= 6-1860F = 2:4873. %
Hence £ = 0-4873. (2)
Method 2. Using (14) §4, dQﬁnd {2) 1,
= {—0-440 017\1;9 0086~ 0-001224-0-0227)sin 20 (3)
~ 1 JSO&-, O'sp B~ 0-385, {4)
In this case unity issrosent, because (14} § .30 has heen used outside
the region ‘;fipulaﬂed’ in §4.32. The value 8 = 0-385 is in marked
disagroement wth (2), the former bei ing in error, since ¢ is too large
for (12), (]4)'\54 30 to vield acecurate results. This is indicated by
the fact tha,t (0227 exceeds the three prior terms numerically.
3 \"Ex;mmple. Caleulate px for the equation
y "+ ({1—0-64 cos 22}y = 0.
The point @ — 1, g == 0-32 lies in an unstable region of Fig. 8 between
by and ;. Here (2) §4.23 does not apply, since g == m? == 1, 0 we
fall back on (19), (14} §4.30. From the former
c05%20~12-72 cog 20— 1-512 = 0,
T As shown in § 4.60 thin value of o applies to (2) for the region concerned. For

{1} §4.60, o — 49,
4361 :

(1)

P
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giving cos2¢ = —0-115 or }-12-835. (1)
Referring to Fig. 8B, we see that o is real, so |cos 2] <1 and,
therefore, we choose the negative root. The reality of o entails
sin2¢ = 4-(1—cos¥*2qa)}, 50

sin 2o = 409934, (2)
By (14) § £.30 we find that
u = 4-0-158 ({see Fig. 11). {3)

The above examples illustrate various formulae and their limitations.
If p is real, [cos 20| and |sin 3¢| < 1, but if imaginary t-hey‘gxceed
unity. Hence for equal accuracy, ¢ in (12), {14) §4.30 may hegreater
when the solution is unstable than when it is stable (1 lma‘g;mary)
If p i computed using {6) §4.91, the result is OJB‘ being less
accurate than (3).

s "

5.11. Calculation of Busing continued fraqtions g > 0. When
@, ¢ are such that (4) §4.74 does not give.sifficient accuracy, the
method below may be used. Applymg the procedure in §3.11 to
{1) §4.17 we get the infinite contmued\{mctlon [94, 134]

Oy —glCr+B?  l(2r LN +248)
Cara U—a/@r PP L@t pr —
(2r2-+B) 2t 448 (1)
N\ 1—af(2r+41+82 -
The next step is to d@n\re an alternative continued fraction for

CorfCap_sg- In (1) 84, 1\7 ave replace r by {r—1}, divide throughout by
qCgr_g, AN obtain.

PE;F@;r—z = [0—(2r—2+4-B)2—g(Cor-afor-2)/0, (2)
" Cyslem= —g/l(2r— 24P ot glensfon-s)] 3)
\\ _ /(2248 @f(Ir—24BP2r—4+f)P (4)
'.f T 1—a/(2r—2-+8)2— 1—a/(Zr—4-+48)2 —_—
But (2) may be expressed in the form :
\ 4 CarfCqr—g = {[—(2r—2-1-BY+a)/g}—(¢pp_g/Cors)- (5)

Writing (r—1) for r in (4) and substituting it for the third member
of (5} yields the alternative continued fraction

e o= “ZTREBIbG | gt By
q 1—aj(2r—4-1B)°—
CHUr— LB 6 HAE (g

—  l—a/(@r—6+87
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Then (1}, (6) are equal for all r provided B has its correct value.
Thus with r = 1, we get, respectively,

OB 2R B E2)HBAR (B4 4)(B 1 6)7
1—a{(4+2)*— 1—a/(f+4)® — l—a/(f+6p —7
(7)
a—8, q¢fif—2)" ¢HB—2?*B—4 (8)
g ' 1-aff—20— l-a/(f—4p -7
{7}, (8) are based upon the form of solution (2) 1¢ §4.70 which pro-
gresses in even orders of 7. Consequently they are suited for com-{
puting 8 when (a,¢) lies in a stable region between a,, and byuu,.
If (@,q) lies between ay,.,, g, the appropriate solution is (8)*1
§4.70, so we use the recurrence relation by

Py = €yfcy =

F o ol am
Yy = CgfCp =

T,
7Ny
%

[@—(2r+ 1485 1y — 4 {CorraTCora) —= 0:\\ {9)
which is (1) §4.17 with (8-+1) for B and ¢, for ¢y’ Making this
substitution for g in {7), (8) gives A

O
o — OB PUBEIBLER UAFOFELT g
VT l—af(B3)— 1—af(B+5) —(IA=a/(f+7) —

5o O—EHIP, g1 GE-LN-I g
' q 1—afB— 1V -af(B—3P —~

The correet value of 8 in (7),{(8) or in (J0), (11} is that for which
Y=y, 0T v; = Ty, 0 < ﬁ«:’:} In practice we aimn to make v,—¥,
or v,—#,, vanish to an Adequate number of decimal places. Con-
vergence of the C.F,.fnhy be considered as in §3.14. A numerical
example is given'gf $6.13 et seq.

5.12. Cal iéiion of u, ¢ moderate and positive, solution
unstable, ;When the parametric point lies in an unstable region ?f
Figs. 8, LI ‘between by, ., and @y, g, ¢ i Teal and we write 8 = —ip
in (2,68Y§ 5.11. Then —u, and Fy—{@+p’) /q ate seen to be conj uga‘t,e
compléx numbers. Let v, = —(x+éy), and fo—(a+pilg = x—1y.
When (v,— ) = 0, the imaginary part vanishes and

IR(wy) = —2 = (a-+p2d- (1)

It is possible to satisfy this equality by evaluating v, alone such that

bwice its real part is equal to (a-+p?)/¢, ie.
22+ (a+pf)/g = O @
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When the parametric point lies between by, ,, and ag, ., £in (10},
{11) §5.11 is replaced by —éu. The conditions for correct p are

B(v)) = R(p,) and I(v)) = [(7)). (3}

5.13. Calculate B for y"+(3--4cos2z)y = 0. Before using the
formulae in §5.11, we have to find a trial value of § to start the
calculation, (4) §4.74 may be used for this purpose if af¢ is large
enough. Here a/¢ = 1-5 is too small, and in consequence the term
in ¢ is too large. An iso-fp chart of the type in Fig. 11, or the
tabular values corresponding thereto, may be used if available. We
proceed now s follows: In Fig. 8 the point (3,2} lies in‘dvstable
region between a, and b;. For ¢ = 2, we find from Appendqx 2 that
a, ~ 2-379, b, ~ 3-672. Referring to Fig. 12, we dund& BA = (4—1)
on the g-axis in the ratio N

(3t —2-3794)/(3-672¢ —2-379%) :mq-ﬁ'os.
Thus AC = 3% 0-508 = 1-524, s0 at (, &= 3-524 and, therefore,
B = 2-524%— 1 == (-589. This is our trlabﬁ and we shall see later
that it is in error hy +4-0-00956... ..\‘

Since («,q) lies between a,, b, we emplov (10}, (11) §5.11, and %o
demonstrate the procedure, chome ‘a less accurate value of A than
0-589. We take = 0-56. ’Neglectmg gomponents in (10) §5.11
beyond the third, and in{ 11) § 5.11 beyond the fourth—-the com-
putation being merely by way of illustration—we get

_2{(,84—5 2(%7) _ABBEIXTE6 o

—af(B+ 1-—-3/7-56%
Ll ﬁ+‘3)@ E _YIBEXESE gy
1—af( 3%5)2 —0:0024  1—3/5:56°—0:0024
NSgf(ptay ZHBEEE . gg0g v, (D
I8 h/(3+5)2 0-0114  1—3/3-562—0-0114
NS 2 2 2 2
O PlE-3PB—0P _ 4/2445 5448 | 100
) 1—af{f—5)* 1—-3/4-442
PB4 2482
l-—a; (B—3)2 00402 = 1-3/2:342_0-0402 ’
/{0ty R A 0466,

1Zap(B—1—764  1-3/0-a8%—7-64
[t (B 1)2]jq = (3— 1-56%)/2 = 0-285,
50 7y = 0-285—0-466 = --0-181, 2)
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5.13]
Since », = &; in (1), (2), we now repeat the computation with
B = 0-58 and obtain v; = —0:207, §;, = -—0-208. Whether 8 should
be increased or decreased to bring v, %, closer to equality in (1), (2)
may be ascertained by examining the continued fractions.

5.14. Interpolation. Next we use interpolation as illustrated
sraphically in Fig. 13A. In this case the crossing-point is near

S =066
7,=- 0181

p=058

Values vy, &y

=058

o\
842002 (=3 >
\ X e
\ O 4751074
A=086  (NY

&

(8

k.
1z,=-0002
3

Fl}igl'?; (a), (8). IHustrating linear interpolation for g.
2 S

one extre\rfﬁfy of the range of 8, which is likely to improve the
accurddy~of the result. To a first approximation-—a higher one not
being\]‘ust-iﬁable with three decimal places—we have

_r %g_gé, g0 % = 00007, (1)
0-02—x 003
Hence to three decimal places
B = 0-58—0-0007 = 0-579;. (2)

Using # — 0-5793, if we repest the calculation with five component
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fractions for v, six for #,, and work to nine decimal places, a more
accurate result will be obtained. Thereafter the accuracy may be
improved by interpolation, and so on until the desired number of
decimal places is reached.

To illustrate the procedure, in Table 5 we give the results of a
calculation using two values of 8 different from those employed
hitherto [94].

TABLE 5
g | 05766 05794 Ag = oo0028 | )
v, | —0-20726 88 | —0-20883 52 [ Av, = 000043 36 | v,--5, = ~ 600004 29
5 | —0:20348 13 | —0-20679 23 | A%, — —0-00331 10 | A5, —Av, —\--DOOITL 46
o'\"\\
Then to a closer approximation O
5 (s.”"
= 0-5794+[-—1"° IRV ToN
A +(Av1 Aul) ﬁ <
= (-57943 2. ' {3)
Continuing the ealeulation we obt-ajri‘?ﬁe data in Table 6 [94].
%
Taphiv6
gl osm4 | osroa3z [agiiaexic- ‘
v | ~0-20683 52 | —020685 049 B, = 4711070 | v —§, = —32x107
% | —0-20679 23 ; —0-20683 01 A%, = --3T8Tx 107 | Ad,—Av, = — 426107
To eight decimal plae\s
0\3‘7943 z+( E_H)AB — 0-57043 224, (4)
)

In interp{ﬂaﬁ-mg, it will often be found that |A#JAB| 3 |Aw {AB]

or vice vorsa. It is essential, therefore, to ensure that the portions

of the\'cil\rf‘i?es between the points of interpolation are sensibly linear.

A Gh'f\mk may be made by caleulating v,, 5, at an equal small interval

3,8 on each side of the crossing pomt The points so obtained should
\ ) lie on the original lines.

5.15. Trial values of 8. We shall now compare trial values of B
found by the method used in §5.13, and also by (4) §4.74. The
former may be crystallized in the empirical formula

R e T

where ¢ = (al —a},)/(b}, , —a}) < 1, the values of a,, b,,,, being for
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the g in the differential equation. If {{2m+1)/m?]¢ is small enough,
a first approximation to (1) is
1
B (Lg)e &

2m

TasLe 7. Trial values of B caleulated from different formulae

I Farmula nsed

J More accurate

a ‘ q B | Bm | B ‘ value of 8
3{m=1) | 2 0589 | m too small i inapplicable: ! 0-5794
g s00 § 5,13 |
f(m=2) 2 0-27 0-29 i 35 ‘ 0-34
8f{m =12) 3 067 ‘ 74 0-7% 0-70 A
36 (m = b} 18 0-51 | 54 {62 | 0-583 2\

W

In the second, third, and fourth rows of Table 7 the superigrity of
(4} §4.74 is evident, although a/g is comparatively sma,ll;f If’in the
fourth row ¢ were 3, a/g = 12 instead of 2-25, and the a,céu}acy wonld
be improved appreciably. Wherever possible, the us¢ of (4)§4.74 is
preferable to obtain the best trial value. 7, \d

Although we have concentrated our atteption on the evaluation
of 8, since it is needed in differential equatipns, the same principles
may be used to caleulate a if B, g ard assigned. First we obtain
a trial @ using either (6) §2.16 or (1)§¥15 suitably transformed, and
then (if necessary) proceed with the method of continued fractions
as in § 5.13 et seq. to obtain 1(\;-— gy OF ¥y = ¥y

5.20. Solution of equations [134]. The methods adopted may be
shown most readily by\a series of numerical examples. We com-
mence with the equation

“~',\'”’y”—|—(2—-0-32cos )y = 9, (1)

whose para : i\é"point {@ = 2,4 = 0-16) lies in a stable region. of
Fig. 8 hetwéen a, and b,. Accordingly we choose the form of sr:hlutmn
at (4) 19°§4.70. Substituting it into (1), equating the coefficient of

e "N‘E};’; “‘“'0 zero, ¥ = —oo to 4, and taking g == 0409 from § 5.10,
we obtain the recurrence relation
[2— (2r+1-409)2]cg, 51— 0-16(Cgrs5F Cprt) = ©- (2)

We have taken 8 — 0-409 instead of the more accurate value 0-4097
to illustrate a check later on. In §4.77 when 7 is large e_“OUgh we
showed that oy, /ey | ~ g/4(r-+1)? 80 that after a certain 7 is reached
the j¢| decrease very rapidly. To start the computation we assume
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that ¢,,,, vanishes to the number of decimal places required in the
solution. Taking r = 3 in (2) and neglecting ¢,, we get

€opq == [2—(2r4 1-409)%e, ., /(+18, (3)
80 g (2--T-3092)6-25c,
ms —330e,. (4)

With » = 2 in (2)
0 = —(2— 5-4092)6:25 % 3300, —c,

= 562 x 10%,. A~ (8
With r =110 (2) A
<\
¢ == (2-3400%)6-25 x 562 x 10e, 43300y
= —3:38 X 10%;. N (6)
Thus €y = —2:96 X 10 7¢,. \:m:\.“ (7)
Using (7) in (4), (5) yields _
D
€3 = —1-661 X 10-2¢,, Y © (8)
€= B TTXI0 %\ (9)
Gy = —2:96 X 10y, {7

These numerical values Ilm%trﬁbe the rapid decreasc in the ¢ with
increase in r, when ¢ =.2,% = 0-16.

To caleulate ¢y, ). %& use the above method, and in the present
instance commen{({"ﬁy neglevting ¢, Then with r = -4 and
g = 01In (2) A

3

"ONE (2—6-5912)6-25¢_,

SO = —osne, (19
Witlew== —3
AV o= (2 4591%)6:25 % 25%_,—c_,
O~ == 31X 10%_,. an
r==—2 o= (2—2591%)625x 31 x 104_,-+259%_,
= —932% 10%_,, (12)
re= b s —(2-0-591%)6-25 X 912 X 10%_,— 3+1 X 10%_,
= —9ead X 108, (13)

Thus e, = --1:06 X 10-7¢,, (14)
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and sines lc_yfe_g| <0 4 10-%, we may anticipate that

[c-p/Cg| < 4X 1075,
so by (14), le_g| < 4 10-%%,. Using (14} in (10)~(12) yields

Cog = —912%10%_, = 967 102, (1)
ey = 31x10%_, = —3986x10-%,, (16)
¢y — —269%._, = 272X 107%,, (17
6y = —1:06 % 107, (18)

Check on B. Writing » = 0 in (2) gives

(2—1-409%)¢, = 0-16(cst-c_y). Loy
S\
Using (8), (138), the two sides of (19) are W
14472102, and 1-38% 10-%,, respectivelys *  (20)
L W

N
from which it follows that the value § = 0-409 isdJistle too small.
Now an error in the fourth decimal place in 8 em@eb a trifling ervor
in 0-16{cy+c_;}, s0 we may write \s

2—(F4-B)> == 1-28 X 10 52, (21)
and an improved value of 8 is then forimd to be
g = 4097 {22)
which is in accord with {1} §g€[0
5.21. Solution of ¢ j }}2—0 32 cos 2z)y == 0. By (4) 1° § 4.70,

N = z Carg €T, (1)
where we haw\tiﬁken B~ 0-41. Substltutmg for €4, from §5.20 in
{1), we obtam

ylz ws}{ 106X 10- T80 | 9.79 % 10-Fe ¥ —
3986 5 10-0¢-¥59=i_{ 067 X 102037 (1315 —
—1-661 3 10-234150.0.77 x 10 -Se¥41 — 296 x 10 Tt
(2)

This form is inconvenient, so we refer to (5) 1° §4.70. If the latter
is substituted in the above differential equation, the recurrence rela-

tion (2) §5.20 iy obtained. Hence, apart from a constant multiplicr,
4451
Q



114 NUMERICAL SOLUTION OF EQUATIONS [Chap. V

the coefficients c,,,; must be the same in both cases. Accordingly
a first solution of the eguation is

0 = 3 cpacos(Zr14H) ®

= ¢)[...—1:06 X107 cos 6-592+2-72 X 10-F cos 4-59z—

—3:286 5 102 cos 2-592+ 9-67 x 10-2 cos 0-59z -

+cos 1-41z2—1-661 X 102 cos 3-412-+ 977 X 105 cos 5-412—

—2:96% 107 ¢os Td1z+4..], (4)
The second solution is derived by writing sin for cos in the erms
i (3), but not in {4), since the terms corresponding to,negative
values of r would then have the wrong signs. Thus we g’e\‘ﬁm\

¥ofz) = ¢ ... -+ 1:06 X 10-"5in 6-592— 2-72 X 10~ "sm 4 )9 %

+3-286 < 10—35in 2-592— 9-67 x 10-2sin Os 09~ } sin1-4lz—

—1-661 % 10-2sin 34124877 X 10- 531:1“.;%‘-414—

~296X107sin T-dla -] N (5)
H (2) is expressed in circular functiong{ (4} is the real and (5) the
imaginary part, ie. the real and imagidary parts are linearly inde-

pendent solutions of the equatton,, wiliteh is to be expected.
The complete solution, usmg @), (5), is

LN Ay1+By2r \6]
where 4, B are arbitrarvconstants real or complex, and this defines
a fundamental systent, YIn an application, 4, B would be obtained
from the initial C{)Il}ﬁht)ﬂb

Check on the shlution. (4} may be checked as in §§3.13, 3.16, by
aid of the relationshlp

"\'~\ ¥{0) = (2g—a)y(0) = —1-68y¢(0).

To m»ﬁequate approximation we find that each side has the value
- ]\8.1’. If greater aceuracy is needed, 8 should be computed as shown
“In§'5.13 commencing with the value 0-4097. The coefficients Car+t
\nmy then be found to the same degree of accuracy as B, if r 18

increased and more significant figures used in the calculation.
5.22. Second method of solving y"4(2—0-32cos2z)y = V-
Here we use the analysis in § 4.30 and refer to §5.10. Then u = 0-4Lif
(3) 1°§5.10 corresponds to sinZo = —511i, cos%c = —-5%
¢ = (—in+if). Substituting in (16), (17) §4.30 we find that

T In accordance with (22) § 5.20 we have taken this approximate valoe of 8.
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8y == — 002478, ¢; = —0-00817. Thus by (1}, {2) §4.30 the first
golution iy
yy{z) == ¥ sin(z—if4-fw) —0-02478 sin{3z —if- jm)—
—0-00817i cos({3z—if+1m)+...] (1)
= e"#13% cog{z— 1) — 0-02478 cos(3z —16) 4
+0-00817 sin(3z—if)+...]. (2)
Expressing the circular functions in exponentials, (2} becomes
¥:(2) = 36 (cos 1-41z+14 sin 1-412)—1-661 x 10~%(cos 3-4¢1z4
~+ i sin 3-41z)+e~2{{cos 0-69z—1i sin 0-592) —
—3-295 % 10-%(cos 2-592—i sin 2-592)+ ...} . ()
Now &in %0 = sin{—#1+218) = —isinh 20 = —5-113, s0 # ia.pogitive
and it has the value 1-166. Then e~2 = 9-7x 10-% and .('3)"Becomes
yy{z) = A;[(cos 141z} 4sin 1-412}—1-661 X 10—2(0033’54&—!—
i sin 3+412) b 97 X 10-*(cos 0-592-243I 0-592) —
—3-2%10-3(cos 2-59z-;—"gf;1'f1 2:59z)+...], (4)
with 4, = 1ef. Making allowance for the.ne&uced number of terms,
(4} iz seen to be a linear combinationﬁof (4), {5) §5.21. For apart
from the multipliers 4,, 4,, the cogfficients agree well enough for
the purpose of illustration. Also,’ siijce the real and imaginary parts
of (4) are linearly independenl.:-‘ﬁolﬁt-ions of the equation, apart from
arbitrary constants, (4) contains the complete solution given at
(6) §5.21. N\
Proceeding to ﬁnd.y}(z), as shown in §4.30, we write —o for ¢.
Since cos 2« is even bt sin 2¢ is odd, we get
- jQ:;;ln:; gy = —0-02478,  ¢; = 0-00817.
Thus the Se\(‘,{{\'ﬂd‘ solution ig
ya(?{% e~041e cog(z-10)— 002478 cos({3z+i0)—
N\ — 0-00817isin(324-468)-F...], {8)
which is merely (2) above with the sign of i changed. It follows,

therefore, that the solutions obtained herein have the forms

y1(z) = Al[f1(z)+3f2(z)] (6)
and 1alz) = ALK —iHE)] )
I applications these forms will usually be inconvenient. Thus when
# is imaginary, the forms at (4), (5) §5.21 are preferable. They may,
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of course, be derived from above, since f,{z}, f,(z) are lincarly inde-
peundent solutions of the differential equation. Then the complete

solution may be written
yiz) = Afi(2)+ Bfy(z), (8)
where 4, B are arbitrary constants.

5.23. Relation between sclutions of types § 4.13 and § 4.30.
Although in §4.50 we demonstrated symbolically that the solutions
are alike, as they must be for uniqueness, it is interesting to ascer-
tain whether or not the two expressions for Z, in {11) §4.50 yield
identical numerical results. From §5.20, é_; = 9-67 » 104, 1 and
from §5.,10, sin% = —5-11i, cos2e = 52, Then ’,:;‘-‘Q()s‘za--m =
—5'2, 80 coso = L1449, Now o= (—in+28)~=1-166, so
cos(—gm+i0) = isinh § == -+ 1-449;. Also sine = Sin 2¢/2 coso =
--1-763. Substituting these values in (11) §4.505Twe' obtain

Zy= ~ @46 )jsing — &, 1-0967(1°783 — 0-622, (1)
and  Zy = i(6,—&_,)/cos 0 = &, X 0-903341 449 — 0-6236,. {2)
The approximate agreement of (1), .(Qj “4s sufficient to illustrate the
point in question. Here Z; is real\since the & are real by virtue of
the parametric point of the equation lying in a stable region of the
(@, ¢)-plane of Fig, 11. N\

5.30. Example: Solvé"y”—i—(B—écos 2y = 0. In §5.14 woe
calculated B for this equation to a high degree of accuracy, but for
the purpose of ilustiation we shall take B = 0-58, Adopting the
scheme outlined in§ 5.20, we neglect ¢;5 et seq. Then with » = 5 in
the recurrence yelation

'.\::‘\[3—(2?'+1'58)2}02”1—2("32:--;3—5‘32»-1) =0, )
we get . { :
. ;Q ey == $(3—11-58%)c,,
.'\’r y w= — 8550y, ; (2)
<\3}-~i—_ 4 €7 = —~5{3—9:58%) X 65-5¢,,-~¢,,
= 2-899°% 10%¢,,; (3)
r=3 ¢s = 3(3—7-58%) X 2899¢,, —¢,
= —T7-893 % 10%,; (4)
r=2 g = —3(3—5+58%) X 78930c,, —c,
= 1-102x 10%,,; {5)

T To conform with the notation in § £.50, bars have heen placed above the c.
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r=1 ¢; = ${(3—3-582) x 1-102 2 108, —e,
os - E3315< 10%,,.
Thus 0y = —0-20680, (— 0-20683 Oc,),
cg= 0-014780, (001474 de,),
&y = —0-00054 3¢, (—0-00054 9¢,),
o= 0-00001 228¢,  ( 0-00001 Zc,),
ey = —0-00000 01875¢, —

To calewdate c_,,_ |, we commence by neglecting ¢_4 et seq.; so wit

== B €. g = H{3—10-422)c_y,
= —52-Te_q;
_8-492
A
= 178X 10%_; X
_R.4o \
Po= -4 €_g = {3_‘6)_%2_) 1780{;_11_5_9 "1;\\.¢
= — 5405 10% ;5 NV
i e 22 ":’. oo
o - B ¢, (5_i %——-)3'4,4:15"1@6104(:_“ —
== 2807 X 10%5)
o 8 g a
Fe= 2 6.4 = (5—%—5‘"}}2807 ¥ 10% 40y

= —17’3'674 it 1056,_11;

r=—1 c,b\——,\i Q_-gizngﬁ-ﬁﬁ'nlx 10%_,—¢.5
\\i\' = —-8x 10%_4;.

Thus Ve, = 04502, (045952 Tc,),

O (L, = —0-3500¢, (—0-35134 8c,),

™ 5= 0-042560, (004275 2e,),

0o, = —0-00222 B, (—0-00224 0cy),

)

Cp= 0-00006 60  ( 000006 bcy),
e_gy = —0-00000 126c, —

t The ratio ryfr, = —0-2068 should be equal to z, in§ a3 .
decimal pluse. The values in ( } were obtained by mnuchine
method of computation {94].
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Check on calculation. This may be effected by compwiing ¢_, for
r = 0. Then from (1)
(3158

4= —:

2
= (0-252+40-2068)c,
= 4588 X101, (24)
which differs from (I8) in the third decimal place. More accurate ¢
than those we have computed are given in brackets at the v.h.s. In
(18), (24), c_, is slightly too small. This defect could be recfified by
using & more accurate 8, and working to six or eigh‘significant

figures. N

N

5.310. Solution of ¥" 4 (3—4 cos 22}y = 0. bmee frhe pointa = 3,
¢ = 2 lies in & stable region between the cur\req @,, b, in Fig. 8, the
preferred form of solution is

o

o) = 3 tyiscoszr11g) (D M
~ (459 cos 0-42z+} cos 1 58;——:0 351 cos 2-42z—-
—{-207 coB 3+ 582:—[—0 043 cos 4-4224-0-015 cos 5-552—
—0-002 cos 6:42 .. ()
with ¢; = 1. The seco@i solution is {1) with sin for cos, so
Yof2) =~ —0 44{&8:11 0-42z 4 5in 1-5824-0-351 gin 2-42z—

—{0207 sin 3-582— 0-043 sin 4-422-1- 0-015 sin 5-582+

,\’ ‘+0 002sin6-422— . (3)
" The 0\ ihléte solution with two arb:tra,ry constants is
y(z) = Ay;(2)+ By,(2). (4)

~ Cs. 311 The Mathieu functions ce .5z, 2), se,.55(2, 2). Referring
’co §4.72, we have to compute the normalizing constant

1/[ 2 62,.1,1] . ()

Using the ¢ in §5.30, we find that K = 0-852/c,. Now ¢, in §5.310
is unity, so by §§4.71, 4.72

Cepss(2, 2) o= 0-852y,(z) 2)

and sep.galz, 8) =~ 0-852y,(2). (3)
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5.32. Alternative method of calculating 5, i [134]. The
method of checking A in §5.20 suggests how it may be calculated,
Suppose the equation to be solved is that in §5.30. First we obtain
a trial § as in §5.13, say, 0-56. Then we use (1) §5.30 with » = 0,
B for 658, and get

[3—(14-8)%e, = 2Aegte). (1)
Analysis as in §§5.20, 5.30 leads to the values of ¢;, ¢_, in terms of
¢;. Neglecting ey, c_, and coefficients of higher orders, we obtain

[3—(148)%)e, = 2(—0-2095-+0-468)c,, 2)

50 8 = 0-576, (3)
choosing the positive root. The process may now be repeated us\iﬁg.\
more significant figures in the working, and commencing Wip}g,‘say,
€5 €_y5- Lhe result will be more accurate than before. Répé‘tition
may continue until the desired accuracy has been attained:! It may
be preferable, however, to use interpolation. From (i) with § = 0-56
and hy aid of (2), we have AN

(3— 1-56%)c,— 2(—0-2095-+0-468)r = Ly ¢y, (4)
giving L, = 00494, O (5)
Taking B = 0-58, we get c;, c_, from ,§5’30, and on substitution in
(1) we have N X
(83— 1-582)c, — 2(—0-2008" 0-4592)c, = Lycy, (6)
50 Ly 0-0012. (7)
Having obtained values 0}\in on each side of zero, we interpolate
and caleulate 8 when Lii:s'zero. Thus (Fig. 133)

\ <
(05805600012 56047 (8)
AT 700494400012
Hence B 0-58—0-00047 = 0-5795, (9)
This may ‘be"improved by repetition and application of procedure
similag o fhat in § 5.14, where an acouracy to eight decimal places
is achieved.,

The foregoing method is applicable to the determination of
# (real} when (a,¢) lies in an unstable region of Figs. 8, 11, but
the starting value of p would need to be assumed, unless a rough
trial value could be obtained from (6}, (7) §4.91, or as in 3° §5.10,
1° §5.35. Also, if § or . is assigned for a given g, the value of a
may be caleulated, -
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5.33. Example. Solve y"-(1—0-32 cos 2z)y = 0.%

1°. From Fig. 8 we see that the point @ =1, ¢ =< (-1 lies in an
unstable region between b, and ;. Thus o, g will be real and
icos 20| - 1, Using (2) 1° §5.10 we obtain the approximate equation

cos?2g—25c0520—1-5 = 0, (1)
50 _ cosZa = 12-5-4-12-56
— —0-06 or -} 25-06. 2)
Since jcos 2] < 1, we take ~
cos 2o = —0-06, A
80 sin 26 = F (1 —cos?a)t = T-0-9982., \ D
By Fig. 8B, —lr = o0 =< 0, 50 & 'fz‘s"
g = —46:72° = —'-0-8155{{.{;{&11.’ (3)
Using {14} §4.30 we obtain N4
g~ 008 (C(}Illpfl‘-l‘a\é;(\\i):§ 4.02). (4)
Also by (16}, (17) §4.30 :
85~ —0:02, 53 ~ —0-0012, (5)

Substituting o, g, efe., mto {lﬁ 2) §4.30 yields the first solution,
namely,

#ifz) ~ c““a{wm((zj\o -815) —0-028in{3z+0-815) —
3
N —0-0012 cos(3z+0-815)4-...].  (6)

To derive the qecond independent solution we write —o for o. Then
ths €3 b(,mg'\o(ﬂ functions of g, change sign. Thus

2&)\“*’ e "% gin(z - 0-815)—0-02 sin{3z — 0-815)+

N\ +0-0012 cos(3z—0-815)+...]. (7).
M\NE;W ¥, — 0 as z > 100, so this part of the complete solution is
unstable,

#a— 0asz — |00, 5o this part of the complete solution is stable.
Hence the complete solution, with arbitrary constants 4, B, namely;
y = Ay, By, ®)

is unstable and tends to o0 as z -» o0, |

T See § 4.92 for a different method of solution,
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2°. We shall now obtain the solution in the form given at (3),
2% §4,70, namely,
Yi(2) = €% 3 oy ¥, (1)
F=—m
using the value of x at (4), 1°. The recurrence formula for the ¢ is
(1), 2° §4.750, which may be written

{a+[ﬁ‘+‘(2?‘"5"1)?{Ja}czr+1"“g(czr-r-3+c2r--]) =0 (-3)
Puftting = 008fa=1,4g= 016 in (2) gives
{U4-[0-08 5 (2r+ 1) gy sy — 0-18(cy oy y) = 0. (3)a,

To iilustrate the procedure in caleulating the ¢, assume that the xeal
and imaginary parts of ¢; vanish to an adequate number of g{e’cl‘m\al
places, i.e. in the computation we put ¢, = 0. Then with |

r=2 €y = —B(30—i)cs, ARG
where ¢-082/0-16 = 0-04 has been neglected in c‘mﬁjﬁirison with
—150. With ‘

r=1 €y == (—50-31)e5—c; \\\
and by (4) = 5(1496— 14(0)e,, :.j':f
50 g = (1325 10-'4 k24X 10-3%)c,. (5)
From (4), (5) ¢4 = —(1-994 x 1028331108  10-%)e,. (6)
To calculate the c_,,,,, neglect, &y, and with
re=—3in(3), - o.5= —830+Fi)kc_ (7)
re= 2 _y :\\—('30+ 3i)e_g—e_g
S 5(14964- 14030, (3)
re=—1 S O¢ == (0:04—d)e_—c
\:j}" == 5(229-84—1489-4i)c_g, (9)
the 0-04, gm’ﬁted previously, being included here. Thus
O Y e = (595X 10-240-998i)e,, (10
YV e_g = —(2:38 107341978 X 10 % )ey, (11
cs= (2024 10-541-313% 10-%)c;. (12)

T When i cannot be caleulated with adequate aceuracy by the method used in 1o,
or by the formulue in §4.91, the procedure outlined in cither §a.ll (continued
fractions) or § 5.34 {recurrence rolation) may be used. The latter is the supPler of the
_tw(_L To obtain a rough indication of the order of u to start & computation {trial #;
8% 1n § 5.34, formula (7) § .91 mey be used bevond its uormal_mngc. Having foyn(
# 10 the required accuracy, the solution is obtained as shown in the present section,
It may, if desired, be expressed in the form given in § 4.751.

4981

R
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As a check we shall find ¢_, by taking r = 0 in (3). Then
¢y = [(0-08-+3)241]6-25¢,—c4

= {5-094 ¥ 10-%+1-001¢)cy, (13)
which differs slightly from (10), Alternatively, from (2} with v = 0
(ut-0)21 == 0-16(cs+c_p)/e;. (14)

Substituting for the ¢, on equating real and imaginary parts, we find
in each case that p is nearly 0-08.
3°. The solution. Substituting the values of p and, the ¢ in
Yy = €4 Y e, €102 gives the first solution: .
_ N
1(z) = ¢, ¥ {1-06 1 0-998i)cos 2 — (2-232-4-2:1:)10-% go83z-
4(1-5291-1-44)10-2 008 5z ...+ (099840847 )sin 2 —
~{1:8641-7524)10~*sin 324 (1-1 89 1 1R34)10-1sin 5z ]
‘ (1)
= ¢, €% 1-060-9987|[cos z—2-1 %1072 cos 32+
+1+44 % 10~ cos 52— ... +0dsin z— 1-75  10-2sin 324
+1:12X 10-*sin 52—...J, (2)
The second solution is obtaiiéd by changing the sign of 2 in (2).
The exponential becomes e2¢%¢, while the sine terms alter sign.
4°, Odd and even solutions. The solutions in 3° are neither odd nor
even. Nevertheless sdel solutions may be constructed using linear

combinations of those in 3°. Owmitting external multipliers, the solu-
tions in 3° may be written

e‘?"’@’[z cos+ Ssin| and e v%Y cos— 3 sin). (1
By additiml” we get the even solution
N g = 2[cosh 0-082 T cos-tsinh 0-08z I sin], ()
:;mld’.'hy subtraction we get the odd solution
\»\} ) §y = 2[sinh 0-082 > cos-t-cosh 0-08z 3 sin]. (3)

The complete solution is
y = AjrtBi, (4’
where 4, B are arbitrary constants, determinable from the initial
conditions. The utility of such solutions in practical problems i8
doubtful since they both tend to infinity with 2. _
5°. Relationship between (6) 1° and (2) 3°, This is expressed by Zy
in (11} §4.60. The two formulae for Z, should give the same result,
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which cught to be a multiple of {1-064-0-998{) in (2) 3°. Then by
(11) §4.50, with ¢; = &, = 1,
Gy —(1-05954+0-998i)fsing and Zy = (0-0405: - 0-098)/coso.
(1)
Now from 19, ¢ = —46-72° so sing = —0-728 and coseg = (684,
Substituting these into the two fractions in (1), we find that they
are in good agreement, having the value
Zy =~ 1-37(1-06 -} 0-9981)

— 1-00p8388°7 (20N
The angle of Z, is the same as that of Z, in 3° §4.752, and sinpg\»Qy
§4.751, Z, = M, Z,, it follows that N\
- M, = 1-99. A3

Reference should be made to §4.752, where the coiijugéte pro-
perties of the coefficionts in 2° are discussed and d:lﬁ)ther form of

solution is given. O

5.34. Example. Solve y"—(1-25-1-2 cos”?é)'y\-_— 0. From Figs. 8,
11, we see that the parametric point ¢ 2*1-25, ¢ = 1, lies in an
unstable region helow a,, where the ige-u curves are asymptotic to
@y a8 ¢ oo, Wheng =10, p :-j«!@*,‘ taking the positive root, so
the eurvature of the iso-p curve, jbhi'bugh the point (—1-25,1) is less
than that of a4 (¢ = 1}. On thig basis we proceed to find a trial p to
start the computation. A¢ few assumed iso-p curves, which may be
drawn in pencil on a_latge version of Fig. 84, gshow that the curve
through (—1-25, 1) willprobably intersect the g-axis between — (0-81)
and —1, i.e. —0-Q&md —1, if sa* is plotted instead of a.f Thus our
trial g lies betw'ga\éﬁ 0-9 and 1, so we shall choose 0-95.%

The recu@r}éé relation for the coefficients in the solution of type
(1) 20 §450%s (1) 1°§4.750. Insertinge = —125,¢ =1, 4= 0-05
thex;tzip‘,Qwé get

O 125+ 2r— 0950y — (carsatas) = O )
Let r = 3, neglect ¢,, and (1) gives (using 2 10-inch slide-rule ag we
are merely demonstrating the procedure)

¢y = —[1-254(6—0-961)7]c; = —36-35(1—0-3144)cq. (2}

T When a = 0, at is plotted. ]

3 I {4) §4.74 is used to calculate p, as indicated in
obtained, As shown later, this is a better value than 0-85.

Procedure, however, is to ilustrate what may sometimes be do
cannot be used.

§4.753, the value 1002 is
The purpose of the ahove
ne when the formula



124 NUMERICAL SOLUTION OF EQUATIONS [Chap. ¥

r=2 ¢, = —[1-254(4—095)%]e,—c, = 506(1—0-814i)c,, ()
r=1 ¢y = —[1-264(2—0-95i)*jc,—cy = 392K —0-107 +-i)eg.  (4)
Then

from (4), g = —2:32 X 10-40-107 |-i)e,, (5)
from (2), (5), ey = 953X 107304214 0-966i)c,, {8}
from (3), (8), ¢, = —(0-13-L-0-1157)e,. {7)
To check the trial x we put r = 0 in (1), thereby obtaining .

—[1-25—0-95%]c, for the Lh.s. R \
~and eytc_y = 2R(e,) for the rhus., R D (8)

since by §4.750, ¢, and ¢_, are conjugate. Thus theeLh.s. is —0-35¢,,
and the r.h.s. is --0-26¢,. Hence the trial xt is tdgkmall, and a better
value is found by substituting x for 0-95 and solving the resulting
equation. By so doing we find that x ~9'095, taking the positive
root,f We now repeat the computat-.i@;ﬁsing @ = 1, and obtain the
following results: \,

e = —(0-12450-119i)c,,

eg=  (3VO+8030)10-%, |} (%)

£s = (623 2484)10-5¢,.
The remainder of thesghution is left as an exercise for the reader.
Since ¢,, and ¢_,, apé gonjugate, c_,, ¢_4 ¢_g follow immediately from
{9) by changing the sign of i. The compuiation of these eoefficients
would constitube’s check. A partial check is obtained by repeating
the proced\u};e\ at (8). Then with p == 1, we get

\> —[1-25—1}e, = ~-0-25¢, for the Lh.g.
a.nd:: 2R(cy) == —0-248¢, for the r.h.s, (10)
" \Bblvmg for 1 as before, we have
’ (a-u2)ee = 2qR(cy), ()
50 p? = —0-24811-25 = 1-002
and, therefore, = 1001, (12).

taking the positive root. Thus the results are accurate enough for

T This procedure should be used anly when the differcnce between the two valaes

of u is & small fraction of tho trial value, When this is not so, a better trial p must be
chosen.
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the purpose of illustration. Greater accuracy may be obtained by
increasing r at the beginning, e.g. take r = 5, neglect ¢,,, and work
to (say) seven decimal places,f with 2 =1-001. An improved value
of ¢ will follow, the computation is repeated, and interpolation then
used as in §5.32. The requisite technique is gradually acquired by
practice.

5.35. Solutions withg < 0. In the solutions with ¢ positive write
(3 —z) for 2. In the case of unstable solutions like (2), 3° § 5.33, the
constant multiplier et may be omitted.

N

5.40. Solutions of y"+{eF2¢sin2z)y = 0. 1f in O\
y +{e—2gcos 22}y = 0 . O
we write (iwFz) for 2, it takes the form of the first eqlmtidﬁ'."'Hence
if ¢ is positive, the solutions of the equation are rIcri\{.r{il “rom those
of "4 (¢ —2q cos 22)y = 0 by writing (1»Fz) for 2

5.41. Solutions of y"+{a—2¢ cos(2z4-8) ‘$GI If we write
{(38+2) for z in Mathieu’s equation, the abéve form is reproduced.
Accordingly for ¢ positive, solutions of, the' first equation may be
derived from those of the second by malmlg this change of variable,
When ¢ < 0, write [3{m+8)+2] for % in the solution of Mathieu's
equation, .

74

5.50. Example. Solve o w—( 3—4 cosh 2z)y = 0. 1fin § 5.30 we
write iz for z, the t,qucmt:{bﬁ* there takes this form. Hence the first
solation is (2) §5.310.&Jth cosh written for cos, while the second
solution is (3) §35, 31{)\\§ith sinh written for sin, the multiplier i being
omitted as it is ;{4}01lstant

5.51. Exaﬁ}ple Solve y"—(3+4 cosh 22)y —= 0. The solutions
derived b,y Writing (1wi+z) for z in those of the equation in §5.50

are ‘{fijlﬁy complicated. The simplest procedure is that given in
§4.71 %61 ¢ negative, i.e. change alternate signs in § 5.50.

5.60. Example. Solve y"+4y | (5—0-32 cos 2z)y = 0. By §4.83
we have x = 2, §— 5, @ = @a—«® =1, g = 016, so the auxiliary
equation is

w4 (1—0-32 cos 2z)u == 0. {1)
The point ¢ - 1, g == 0-16 lies in an unstable region of Fig. 8 between

7 Using a machine.
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the curves b,, a;, and the first solution of (1) is given by (2}, 3° §5.33,
Then y,(z) = e %u,(z}, s0
,(z) = [ 1-06+0-998:]e +9%(cos2—2:1 X 102 cos 3z+... 4
+0-94sinz—1- 75X 10~ %sin 32+ ...}, {2)
The second solufion is derived from (2), 3° §5.33 by writing —z for
z and multiplying by ¢~%. Thus
fo(z) = ¢[1-06--0-9981 Je—*%(cos z—2-1 < 102 cos 3z+...—
—0-94sinz-}-1-75 X 10-2s1in 3z-—...).  (3)
In (2), {3) we may write ¢ = ¢,{1-06--0-008¢], a constant nfaltiplier.
Both solutions tend to zero as z — o0, and are, thep"ere stable

but non-periodic. The complete solution, with tW(}”fE‘Ybrtra.ly con-
stants, is

A\
y == Ay, + Bys, \}} , @
and this constitutes a fundamental system. ()
N
o w
i':;”;
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6.10. Form of equation. For general purposes this may be taken as

d%y
Yt la—2gplanly = 0, W
where ${wz) is a periodic differentiable function,f such that
[$(w2) ez = 1. Usually ({wz) is even in z with QY
’ ar .\:\'
j Haz) dz = 0. O

Sometimes ih{w?) jnax 7 (@2} mm, but this case is not.comaldered
herein. We assume a, g to be real. When f{wz} = cos 24, Y )becomcs

the standard Mathieu equation. In certain appllgtlona it is con-

venient to write (1) in the form \ o
d o E
PY (o2 5 cos ), g

&
\
k.

where 8, 8,, 8,,... are assigned para,n‘re’ters and z |6,,] converges.
r=1

The theory in §§ 4.10-4.16 apghe% to (1), (2). Stability is discussed
in §§4.14, 6.50. K4
B\

6.11, Solution of (2)§ 6.10. In accordance with § 4.13, we take

a solution of the form {2‘15]—369 comments in §6.31—
t\..
\O7 mln) = e S e, O
O\ pem e

where u mﬁg,j'{"'be real, imaginary, or complex. Substituting the r.h.s.
of (1)3@%2) §6.10, we obtain

o o et . i
S (- 2ri)%e,, 248y S Cqp 70, D oq [HTHL e2r =17 ]4-
=) — Zm

+8, § 02’_[32(?‘-%2)@5 + ez(:-—ﬂ}zi} 48, EU:D ﬂg,['g%"'sm—i‘ ehir —3}%} +oe {3)

T ¥{we) may also be periodic and finitely discontinuons {piccewise continuous},
bUE it cannot be differentiated at its discontinuities. The saw-tooth function treated
later is & cage in point.
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Equating the coefficient of e** to zero, r = —oo to w0, we get
(- 278) ey, 400 0o+ 05(Carp T Cor ) H04(Cor g +Copia) +
+86{CagtCop i)+ = 0, (3)
or (ut2riest 3 Bayorigy = 0, (4

with the convention that 8,, = 6_,,. Asin §4.20 we have a set of

equations, infinite in number, giving relations between the coeffi-
cients ¢,.. Dividing (3) throughout by

N
(ot 2148y = 05— (2r —tp)® = ¢y, O\ (8)
we obtain AN
82 94 ~ A o 6
Cay ‘|'gz— (c2r-~2+62r+2)+$' {€ar 41Cop e =0 (6)
or 2r
Giving r the values ...—1, 0, 1,... in 51'10003.3}(:11 leads to the set of
equations
)
e A tel
by
6
N + _6(:_ _|.. Sip
do

8 :.
* “!‘ ?ég c.—.s + —G'G s‘ t—=
2 2L\ !

The elimim{iixt"’for the ¢ is

A= , _ , =0,
\'\\ . 1 Oofb_a Osld s Beld g Oofd_s
\ Byfd_s 1 92/€6—2 O4/d_a Oe/p_z
Ode bafby  [1]  Guide O - ®
Oalbe  Oifds By, L LR
/by Oofbs  Oujdy 64/, 1

provided 6, # (2r—iy)2.

6.12. Evaluation of (8) § 6.11. Adopting the procedure in § 4.21,
we can show that the determinant is absolutely convergent, provided
none of ¢, vanishes. Then by an argument akin to that in §§ 4.22,
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4.23, we find that [215]

~costpm = 1—A(0)[1-—cos 8] (1)
or sin® Jiur = A(0)sin® =6}, (2)
where A{0) is {8B) §6.11 with g = 0, and §; & 42 Thus
A(D) =

I 6/6,—16) 6,/(6,—16) 8/(8—10) 84/(6,—16)
B/B—4) | 1 6)(B—4) /6 —4) | 6/6—9)
0, | 08, (1] 60 | 848, (O
0/(B~4) 1 8,/(8p—4)  8,/(fp—4) 1 %92/(90%‘4} ’
8,/(By—16) 04/(80—16) B4/(Ba—16) Byf(Bq—1 6) ’ j.j'i""'
¢

(3)
. N
The remarks in §4.24 on the roots of (3) §420 apply equally to
those of (8) §6.11. When 8, 8,, ;,... areXémall enough, it can be
shown by aid of the expansion for cot z that
1ogbl g2 O :Erz g2
A) ~ 1 TO0bETO Oh o O | Us
O =1+ = g ¥ g g T @
A less accurate formula can &® obtained by expanding the third-
order determinant in (3} ab{:ﬁ;\ﬁ the origin. Then if 8;, §,,... are small
enough 95; 263 5
AO) ~ 140y 272 724 A, 5
N2 (C AT SR A )
. 6.13. Example.” In the lunar perigee problem [70] which gave
rise to Hil]’s‘\{\(’luation, the following data were used:
8 g, — 1-15884 39396 0,
O 8, — —0-05704 40187 5,

)
N 8, = 000038 32380 0,
B, == —0-00000 91732 8.

Caloulate the value of p.
1°. We shall get a first approximation using (5) §6.12. The last
two terms will be neglected, since they are of order < 10-7. Then
A(0) ~ 14-[262/8,(4—8,)] = 1-00197, (1)

e [AO)]F = 4+ 1-00098 5; also 0} =~ 107649 6. (2)
1
8

|
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Thus sin dmrip = [A(0)]} sin {0}

e L 1-00098 5eos(fm X 0-07649 &)

= $-1-00098 5cos0-12016 0

= +1-00098 5 0-99278 9

= +0-99376 7. (3)
We find that

Imip = 4145809 1 or -+ 1-68250 I radian,
80 e~ 4092888 62 or $1-07111 4, ) (4}

the sum being 427, Since {5) §6.12 is not a very accurateMormula,
we are not justified in giving the value of u to m@i‘e.\ than three
decimal places. Thus we take Oy '
w0929 or 4 1-07E D (5)
T 2°, We shall now obtain a more accurate mjﬁ\e of i using {4)§6.12.
hen

BY = 107649 61400 8 (3t dnt _

ol = 169095 61826 5 G ‘48:#—'"0 — —0-08809 15080 2

cot w0} = —0-12074 15203 9\ S BB(1—6,) = —0-02048 56419 7
singn6) = 099278 04864  G2(d--8) — O 516 9
[ 1= 002048580027  2(9—6,) — o 1
Thus LLAD) = 1-00180 46085 4 (1)
and “CTAO)] = +1-00090 15965 6. (2)

SO sindmip = [A(0)] sin Jnft

'\:j;‘ — +0-99368 48798 9, (3}
80 (\# = 092841 62006 3i or J-1-07158 37993 7i. (4)

Th.s'ﬂ\e values of p are correct to six decimal places. More accurate

: .{&IUes may be calculated by aid of (7) §6.30 which gives

po= £0-92841 67276; and J-1-07158 32724i. (3)

6.14. Calculation of coefficients in (1)§ 6.11. Having found i,
it: 8y, 8,,... are small enough compared with 8, an approximate solu-
tion'may be obtained by neglecting all ¢ except, say, ¢4, ¢_g, € Co0 O
In (7)§6.11 the five equations, the central one with two immediately
above and below it, each containing only ¢_y,..., ¢,, are solved in the
usual way. A rough approximation may be got by solving the three-
equations within the broken-line rectangle, which include only €2
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¢y Co- In any case, unless 8, 8, b;,... are small enough compared
with §,, the zolution is troublesome, Additional methods are given
below.

6.20. Transformation of Hill’s equation to a Riceati type.

12, The form of {1} § 6.10 is such that the analysis in §4.82 may
be applied provided ${wz) be written for cos2z. Thus the Ricecati
type of equation is (2) §4.81, where p? = [1—(2¢/a}p{w?)]; and if
la) 3 q > 0, [f{wz)lmax = 1, its solution is {13) §4.82. In terms of
i we have [133] p

Y ~  constant cos| , f _Z .\t O\
g 1 Gglaiwa] sin[“ D (Pl O

N

wig [0, B0 W2 | dips |
+or [ v T%[l—mqfam}[l—.(zmb]*] W

As in §4.82, the argument of the circular functi\qx;\s is periodic, the

7

frequency of repetition being o\
T d OO
f=ww| | NN

s

I 27 \} , o' gy bqy™ —]] {2)
— a1 bl 0 TR :
R (1 yfaip] T 2a[T—(2/a}i]
Under the conditions |a| >q\> 0, [#wz)imax = 1, We derive from
(2) the approximation \\

= ot qugphbga 3 (14 g+ e X 14-bge )
i B
The I‘eriOdicity:\igﬁhe reciprocal of (3). .

The soluti(\{é“éf (2) §6.10 is obtained if in (13) §4.82 we write 6,
for q, &Ilgi take p% = [14-(2/6) § 6, cos 2rz]. As a first approxima-

N7 r=1
tion\"ﬁ*}ﬁ’h g(z) = p we get
91(2) ~ constant ._..COS[Bgf [1+(2/90) i 8, cos Qrz}*dz )
n | N i #=1
& [1+(‘2;’BD) 3 8y, cos inz]lsm 5
ret (4)

@ -
This solution rests on the assumption that |8o] > 221182"!1’ and in

common with (1) its boundedness implies stability, i.e. {(£) does not

hold for an unstable region of the a,g-plane for Hill's equation.
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2°. 2¢ > a > 0, [p(w?)|pmax = 1. We now write (1) §6.10 in the
form

42| 5~ bt |y = o ®
Substituting y = c?fwdz with % = 2¢, we get
= g ®)
so from {5), (6), if £2 = [(a/2¢)—], (5) transforms to ~
e =0, O 0

On comparison with (2) §4.81, the approximate aolutmn of (5} is
obtained by writing y for v, and £ for p in (13} §4 83, Thus

m\‘
gl(z)w-v(constant)fl { (2q)k[ {¢6— {2§§’* 3£/%)/16¢£%) dz] {8)
0

By omitting the terms in &', ¢”, we gét\‘

Yipn o ct;nnstant_(?qr);i c& ® 9)
J ( ) {_fl thﬁ(wzi]k Sll’l[f { 29’55 z }‘i dz] ( .

The solution of \Iathaeu s equation under the above conditions is
found from (9) by wr,mng cos 2z for Y{wz).

6.21. Solutnon\\f {2) §6.10 involving Mathieu functions.
The equation.may be written
A\

x'\:"?}"-{—(& +28, co8 22)yy = — [i 4y COS 2?'2] (1)
a r=2
If fm'§ first approximation the r.h.s. of (1) may be neglected, and
1f\ f1s imaginary, the solutions are

QO NE) = ceniplz —q) and  ylz) = sepglz, —q) (2
provided 8, is not a characteristic number for ce,,, se,, 0 < B <1
and ¢ = 48, For a second approximation to the first solution wé

t If 6 i5 & characteristic number, then g = 0or),and with 6, = 0, by ChaptersIL,
V1, the solutions are
Yo =cople, ~gh oy = felz, —q) (8, = a,,),
or #e = seglz, —q), ¥p — ge iz, —q) (8 = bm)

With 8, 2 0, — ¢ becomes +g,and {— 1)% is absent from the second X in (3). Sce§ .75
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use y,(z) for # on the r.hs. of {1}. Then we get
Y+ (6,426, cos 22y
= (—1)7+12 é 2r —-1) "A(m+ﬂ)[cos( s+8 )z}, 3
( [E 2 CO8 Z]S_Zou{ fs+1 2s+14-8 )
B or {B+1} being used in accordance with §§4.70, 4.71. Taking only
the important terms on the r.hs. of (3), the equation now to be
solved may be written

DY | (9,196, 008 22)y = 4
@—l—{ o120, cos 22}y = f(z). { )\

6.22. Solution of (4) § 6.21. We write the equation in the form
A\
T + (-t 2g00822)y = fi@) Rt

27
| ‘~

When f(z) = 0, we take the complete solution as t ess‘llm of two
Mathieu functions y,(2), ¥,(z) with tho arbitrary gonstants 4, B.
Thus

y(2) = An+Byr 0 (2)
When the r.h.s. of (1) has the value f(z), sup}ose that
y = Ay, -+ Bys+A1(2,)2}/.1+B (@)ye (3)

dA,  dBy\Y
0= yl-—d;#yg‘a?.: (4)
where 4,(z), B,{z) are variable pai‘ameters {functiong of z) added to
the respective arbitrary cgﬁs}ant% in (2). Differentiating (3), we get

dy \\

RE = Ay1+By2+A1y1+B2y,+A1y1—|—B'gyg- (5)
Using (4) in {5) g\ /

\? d_?”z (A+ A, +(B+ By, ()
© O f;i’ (A+ Ayl +(B+ Boyit Aiyi+ Bave )

Sub\tltutlng {7) into (1) and using (3) leads to
(A+4))yi+ (a-+2g cos 22)y, ]+
+(B-+ By)ys+(a+2q cos 22)y, ]+ A1 ¥i+ Baye = &) (8)
Now the [ ] are both zero, so (8) reduces to
Ay g1+ By, = flz). (9)

Solving (4), (9) gives
(10)

Ay = yof ) i—th o)
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By §2.191 the value of the denominator in (10) is —¢?, so

4= —nf@e, or A= — [wfEdn

Also B, =y, f(z)jc?, or B,= céf Yy f(2) dz. (12)

Substituting for 4,, B, from (11), {(12) into (3) yields the complets
solution of (I). Hence

w=Mm+&M—§PﬁU&MM@Mu—mmfmwumwﬂ(m

= complementary function §- particular integral. \ N {14}

This solution is valid if —q be written for ¢ in (l}, ‘ﬁrovided Y U
are then solutions of y”4(a—2gcos2z)y = 0, a’nd c? is caleulated
therefrom. If (#,q) lies in a stable region of"‘];‘lg 8, these solutions
are cem-tﬁ(z g} Sem+,ﬁ(z ).

When the point {(e,q) in {1) lies in, aﬁ\unsta,ble region of Fig. 8,
so long as y,, ¥, can be found, {13 gh res the solution of (1). The
method in §4.90 for solving \*Iathleu s equation in terms of Mathieu
funetions is applicable to Hlli ‘s'equation. Reference may also be
made to §10.70 et seq., where integral equations and their golution
in connexion with Hill'g equa,tlon are discussed.

6.30. Solution {}ff,?\;”+[80+2 % fl,, cos 2-rz]y = 0 by method of
=1
§4.30 [81-3]. "We assume a solution

N© Y = €g(z,0), (1)
where N\

\"P‘: b a0}y thylo)+ Og gl + .. 4-

Q Oy (a)+ B Eyf0)+ ot

\' +8,0,8, 4(0) 1'9 O £5{0) +6, 04 €, 6l0) 1+

) +88 xa{o) 4

+.... 2

$(z, 0) = sin(z—0)+ 8, /32, 0) Hufolz, o)+ +
030,02, 0)+ 8,02, 0) -+
F0285054(2, )+
8 hy(z.0) oot

+... & periodic function, (3}
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¢ being found from the relation
by = 148y 05{0) -+, 0 (o) +- by x4(0) + ...+
+8Bylo)+ 04 B0+ +
+8,8,8; 4l0)+ ...+

B yglo)F o (4)
Substituting (1) into the differential equation yields
#"+ 24+ [0+ 00 2 3 By, c0s 2] = 0. (5)

Inserting the series (2)-(4) into (5} and proceeding as in §4.30 to get.:
a periodic solution for ¢, we derive expressions for 8;, u, f;, g4 et

The analysis is much too extensive, however, for inclusion hez\'e 80
the original memoir should be consulted. Expressions foa' B, and u
are given helow for makmg a computatmn Then \\

13 893

1, 1
B =1— 65— 203~ L o360, \371184

192

—I-COSQGI: 2t Ly 944—]28 B¢ — 6493—[_19)2
AN
144 263’ 9612 ‘+E§ bt ]+

1 5 9181
+COS4°L§9§+‘€‘1926“4+ 9294 51294+1: 69472 Bt ]+

i \1:3 5
+eosto| g0 4096924_...]4-

'{‘008804; 93—0— 5+ ]—i- (®)
p*sm{u[ 8+ < 6294—}-249435 93"‘”384 B8t

\\ +2889 07— 9221116 2 "+3:i2;4 it }—'_

+Sin4a_1289234+1152 0200 — 0324'9‘*'4 4;)368 2t ]+

+sin6cr:-l—65§;ﬂ§64 TR ]+

+Si“8“: 6515536 it ]+ v "
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6.31. Calculation of x. Using the numerical values of 8, 4,,...
given in §6.13, we find from (6) § 6.30 that [81]
1-15884 39396 0 = 1—0-00081 33804 9—0-05704 65855 T ecos 2o
+0-00040 66226 27 cos 404 0-09945 cos o—

—0-01Y368 cos 8a. (1)
Thus
cos8 2o = —2-79871 82492 14-0-00712 79047 3cos 4o+
+0-07165 65 cos bo—0-0%64 51 cesde. (2)
Expressing the r.h.s. of (2) in terms of cos 2o leads tq'gkm';'bquation
0-075186 08 c05*20—0-07662 60 cos®20—0-01425 586{23 Beosle+
-+ 008 20+ 28058460209 7 = 0. (3)
Using six significant figures and the last ﬂ,ﬁ:ee terms of (3), we

obtain the first approximation cos2¢ =AN2-70178., Then by the
process of successive approximation ip‘i8*found that

cos 20 = —2-70178 48031 8. (4)

Since |cos 20| > 1, by §4.60, e\= —}n+ix, and from four-figure
tables a = 08255, s0 0 = 0w 1-0-8256i. Also

sin 20 — Fi(cos?2o=S1)H — T2-50990 86064 05, (5)

sindo = 2sin 2¢(ces 20 = +13-56247i, {6)

sin 60 = sifdal4 cos*20—1) — F70-7758i, (7

sin 8o == 4 bin 2¢(2 cos?2¢-— 008 20) = - 368-8i. {8)

Inserting ’t\}gé\t;alues of 8,, 8;, 8; in (7) §6.30 we get
}\%"—0-02852 03942 5sin 20— 0-07212 52 sin 4o+

.".:\ “ -+ 0-0%3 162 gin 60— 0-0*326 5in 8a. (9)
Baing (5)-(8) in (9) leads to the result
) p = --0-07158 327244, (10)

By aid of the formulae in [81], fy. fi. ¢, etc., in (3) §6.30 may be
found, so the first solution in the form (1) §6.30 is obtained. The
second solution is derived therefrom by changing o to —o¢ and +#
to --u. Since u is imaginary the solution is stable, and if the number
of decimal places is fixed (conventionally) it is periodic. It may of
course be expressed in the form (4) 1° §4.70 if desired. In this con-
nexion we remark that the values of u in (10) differ by i from
those at 2° §6.13 (up to the seventh decimal place), because in §6.11
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we assumed the form of solution at (1) 1°§4.70. Without a stability
chart for Hill's equation—like Figs. 8, 11—the particular form of
solution required to keep p in the range 0 <t u < ¢ iz not always
predictable. In the present instance, however, §,, f; are so small
numerically compared with 8, that the equation is approxzimately
& Mathieu type. From Fig. 11 the point 6, 8, lies in a stable region
between «,, by, so there would have been justification for replacing
9r by 2r+-1in (1) §6.11 in accordance with (4) 1° §4.70. Moreover,
an approximate value of u = ¢ may be calculated from (4) §4.74,
Using only three terms, we find that u =~ -0-07137 (10-inch slidéx
rale}. The iso-g curve 8 = 0-0718 lying just above a; in Figy Ll\s
an approximation to that for Hill's equation with the 8 in 38, 13,
6.40. Example. We shall determine u for the equatadn 4]

$

d*y R\
...... 4 Qe 2 Oy = AN 1
G o ol = & )
By §4.83 the substitution y = e *u{t) leads wiﬁﬁé equation

Y fa— S o)

with ¢ = (¢’ —«?). For (wt) we choose the saw-tooth function repre-
sented graphically in Fig. 14 It has period 2mjw, and the Fourier
expangion i

H
¢(wz) Z (—1patiet, (3)
We see that _[ g[;(m@).dt =0, and that |H{w?) |,m,hx = 1. We consider
—iw £ Y
the interval _([}’ < t < m/w, where the function is defined to be
P\ Plowt) = wt/m. (4)
For thls mterval alone, (2) may be written
~O d2u Ygw
) it I—2tju=0. 5
\ dt? +a( an )u )
“’riting T o= (]_._-yot), where Yo = ngl,n"a'rr, {5) transforms to
d2u _ &
ﬁ—{—b%u =0, (6)

With 8 = a%7?/4g2%2. By aid of example 46, p. 38, reference [202]
we find two linearly independent solutions of (6) to be
uy = TI'J&((xTi) and %y = T*Yg(fx’*"g)’ N

4961
T
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where o == mal/3wq. Although these solutions are valid for the
interval —mfw < f < wjw only, they enable us to determine x by
aid of (9) §4.152. We now proceed to obtain the various components

in that formula.

du d ) B _
&f = T%d—T(fng)J!,(&Tg)—{—%T L (oert)

= Jor(ard) 437Uy (ard).

| IR
, 1= ff@iéj max.
——— - - 4 0 L - _" ‘\'\.n
=" g (wé) min
. Y
Lol o
~%% Y%

Fia. 14. Sﬁi{*’-tooth wave form.

L R

Using the recurrence relation

Ta) = —2T@)+ T, 1)

\ 2
in (8) leads o)~ % = Bord_y{ard).

.Q 4 T
> du du, d
Th Q" ket R ) e =
e'n\:\\w 7 7 @ a¥rd_{at?).
.. Similarly @E‘% b ey,

6.41. Values of the various functions at { — Frjew. Writing
2g/a = y in the formulae in §6.40, we obtain the following results:

u(Fa) = Lyl £9)t],  ui{Trn) = —at(l ) [«(1E9)]

(1)

up(Fr) = (LepF[a(ldy)],  ayFm) = —ab(lky) Y [l L))

(2)
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The Wronskian for the Bessel functions of argument «(14-4)! is
[202, p. 156, ex. 61 4]

ALy Yi— T3 1] = 2fm. {3)
Using (9} § 6.40 for J; and Y} in (3) gives
1Ly R Yy — Ty Ty = 2/m. (4)

By (1) §2.191, u, %y 1%, = ¢?, the argument in this case being .
Substituting from (1), (2) into this identity yields

— a1 Y[ Y —J [yl = ¢? {(Bh,
and from (4), {5) it follows that A\
9 — — dat/ma. ~\ ")

6.42. Evaluation of .. We have now found expressigs for all the
components in formula (9) §4.153. Substituting frdm-(1), (2), (6)
§6.41 therein, and writing w, = a{l4-y)}, w, = wfiv2y)}, we obtain
after a little reduction N

cosh Zyurm = a1 —y){(1— [y () Tyltby) Ty 100) Y ya00) )+

‘|‘(l+?)Q[J—5(E¢{1):}:&'(wz)_'-Ié(wz)y--ﬁ(wl)]}- (1)
I the values of wy, w, are large griéiuéh, (1) may be simplified by
using the dominant terms in the asymptotic expansions of the Bessel
functions. Then [202, pp. 166, 161]

."‘\ £
Joglw) ~ (j{:)écos(w\&‘ﬁ:%w), Jy{w) ~ (ﬁ“u)%ﬂos(w_iﬂ*—%ﬂ);
(2)
Y g(w) ~ %}%\s;n(w— lr41m), Yi(w) ~ (ﬁ-’)%sin{w—;}w-—&ﬂ);
4 v 3 ’ (3)
"\

the partjf}mitted in each case being O(1/w!). Substituting these into
(1),.aftér some reduction we find that
" cosh 2y = (y/(1—y2R[(14y)i—(1—yPfjecos(wy—w). (4
Since stability of the solations of (1) § 6.40 depends upon the factor
-4 (see §4.83), this subject may be investigated using (4). The
cireuit of Fig. 23 D is examined in this respect in [44], which may be
consulted. Stability conditions for various mechanical and electrical
devices are discussed in a number of the technological papers cited
on pp. 373-81, and to these the technical reader is referred.
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6.50. Stability of solutions. In § 4.60 we discussed this guestion
for the equation y"+(a—2q cos 2z)y = 0, use being made of Fig. 85.
It can be shown that, when y{cwz) is assigned, the {2, ¢)-plane for the
equation y"+[a—2¢ d{wz)ly = 0 may be divided into stable and
unstable regions after the manner of Fig. 8. The stable (unstable)
regions lie between characteristic curves for solutions of integral
order baving period 7 and 27 (w and =, or 2 and 2x). The stability
diagram is symmetrical about the g-axis, provided y{wz) is sym-

27

metrical about the origin, and iz periodic with J.a]b(wz) da= 0.

0
Characteristic curves for coexistent solutions of fractibnal order
having period 2sw, s 3> 2, and corresponding to the i€03B curves of
Fig. 11, may be drawn in the stable regions of tlxe;pi;a,ne. Here p i8
imaginary, but in the unstable regions it is eithet’realf or complex,
according to the form of solution assumed (g6e§'4.70). Solutions of
period = or 2 do not coexist (unless ¢ = 0}, \and the second solutions
corresponding thereto are probably n “eriodie (like the Mathieu
case), although a proof of these statéients has not been published.
The asymptotic nature of the stai}ility diagram has been discussed
at some length in reference [lfl], which should be consulted for
information on this topic. Amongst other matters it is shown that
in the region corresponding ‘o that below ourve a, in Fig. 8B, p 8
real and the solution;uiﬁ:stable—as in the Mathieu case. This arises
mainly from the fact'that |a] > 2¢ and « is negative. In the regions
corresponding t\those above the characteristio ay,

a ~ 2 1(0?) lmax+ 0 (a,¢ on xight of a-axis) (1)
and a2 20gllp@mutOlet (., left ). (@)
If, ag-oontemplated hitherto, (w?)|max = 1, (12) §12.21 is repro-
dl\ib,é’d. =

\H\' 4 Provided ¢ has period m. If ¢ has period 2m, the boundaries correspond to
solutions with periods 2w, 4=. Reference [82] may be consulted in connexion with
stability for smelf values of the § in {2} § 6.10.

1 In this case iso-p curves may be plotted as in Fig. 11.
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NON-PERIODIC SECOND SOLUTIONS CORRESPONDING
TO ce,, se,, Ce,, Se,,

7.10. Non-periodicity of solution. If the first solution has period
# of 2n, it may be shown that any second linearly independent
solution cannot have cither period. We now illustrate this by a
particular case [84]:

TuroREM: If @ be assigned for ce,,(z,¢), the odd second solution
cannot have period » when ¢ £ 0. S N
Proof. Suppose the second solution is the odd function .\ =

3 cypsinfer 2 ¢
which has period =. By (I) §3.10 we have the segurrence formula
fi : Xl
OF £€q, (2, ) fa—4)d,—q(d,+24,) ?\Q, (1}

and if the assumed second solution is subs;tgit{lted in Mathieu’s equa-
tion, we obtain the relation [\
(aw,_.4)02?§5’:4": 0. . . (2)
Multiplying (1) by ¢, (2) by A{and subtracting leads to
~\
Azca—@a}: A, A,] = 24,¢, (3)

€z Cy

When 7 > 2 the rec;xp":;éﬁce relations are, respectively,

x'\’j{a'_' 4r2)4,, = ¢{Agp,qtAor-2): (4}
nd AV (a—drte, = glegat o) (5)
Dividing () by (5) yields
m; Y Aty Agaaty = Ap 2t Auloe (6)
80 [Eh]
Ay Agrigl = gy Ag] = o = |4a A4[ == 2446, (7)
| o Corie ‘ Car—2 Cor ¢ €4 |

solutions,

For convergence of the series representing each of the two
that each

we must have A, >0, 65, >0 as r— 00, It follows ‘
determinant in (7) does likewise. so Ayc, = 0. But 4, # 0, save Il
the case ¢ — 0, n > 0, 50 ¢; = 0. Hence all the ¢ are zero, im‘% a
second solution having pefiod o does not exist. The same conclusion
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may be reached for a solution of period 2. When the period iz 297,
3= 2, it may be inferred from §§2.16, 4.16 that the two solutions
of Mathieu’s equation coexist, and have the same period. This may
be established by a method similar to that used above. Since the
period cannot he & sub-multiple of =, it follows that the second
solution corresponding to ce,,(z,q) is non-periodic. The cases of
€8y, 415 58y, may be argued in like manmer. Since Ce, (z,9), Se,(z9)
are derived from ce,(z,¢), s€,,(2,q), respectively, by writing iz for z,
the same conclusion may be reached here. The periods are, of Gaurse,
=i and 27i. It may be remarked that a general treatmiept®of the
periodicity of the solutions of Mathieu’s equation is gi{e‘n.\m [150],
to which reference should be made. A different approach to the
non-periodicity aspect will be found in [71, 89, 12@'].""

7.20. Relationship between first and se’ég}t;d solutions. The
following analysis is applicable when the first*solution has period =,
97, and the second is non-periodic. If/ddes not hold when both
solutions are periodic with period 2&%,s = 2.

Choose ce,,(2,q) as the first apfution with period =, even in z.
Then we denote the second nan-periodic solution, odd in z, by
fe,, (z,q). I (w42} be writteh for z in the differential equation, it 18
unchanged, so fe,, (732, italso a solution. Thus we may write

fegalmtz) = v cey,, (2) 8 tey,, (), (L)
where y, 8 are comstants, and the presence of ¢ is presumed. Again,
taking (w+2z) fér)z in (1) gives

OV fegn(2m+2) = y coy,(2) -8 feg, (7 +-2), (2)
since cegyle) has period .
S}lb}ﬁtuting for the last member of (2) from (1) leads to

A N fe,, (2r+2) = y(1+8)ce,, (2)+82 fe,, (). (3)
Q?Replacing zin (3) by (z—=n), we get
feﬂn(ﬂ_i—z) = 7(1'1‘5}332:1(2)_82 fﬂgn(‘n’—Z), {4)

the negative sign arising from fe,, being odd in z. Putting —z for
z in (1) and substituting in the third member of (4) leads to an
alternative version of (1), namely,

fe‘a-n(ﬂ""'z} i 'Y(l '+-8—82)082n(2)+83 fem:(z}' (5)
For the identity of {1), {5) we must have

y=y(14+3--3%) and 8§ -—=8 simultaneously. (6)
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Now fey,(z) is non-periodic, so by (1) neither y nor 8 can vanish.
Thus § = 1. Inserting this in (1) yields

foy, (m+2) = 7 ceyy(2)+eq (2), (M)
and since y is independent of z, it follows that
f‘e:‘.n(w -I_z) fea:;( ) - ycezn(z)! (8]

a periodic function having period 7.7 Thus fe,,(z) must satisfy (8)
In addition, when ¢ == 0 it must reduce to sin 2nz, for ce,,(z) then
reduces to cosZnz, and these are two independent solutions of{
¥ tay = 0, a = dn’ \
If f,,(z.¢) is a function periodic in 2, with period =, and we xvrlte
Iezn(z: Q) = (’211({1 zcczn{z=q +f2n(z Q)! ("}'«. (9)
(8) is satisfied provided y = nCy(g). Also, if Oi‘att@‘_’ 0f aund
fonlz@) > sinZnz as g >0, (9) fulfils the conditigns.for a second
noti-periodic§ solution of Mathieu’s equation. N

7.21. The function f,,(z, ¢) and its normﬁhzat;on The second
member of {9) § 7.2¢ is odd in 2, s0 fp, (2. q) fonst be odd in order that
feyn(2,9) may also be odd. p

First normalization rule, based upan § 2 11. We take the fanction

Fonl2,9) ﬂ\m‘an—-—- ZQS(Z (1}
+L )
where §,(2) are odd contmﬁq}xs funetions of 2, the coefficient of sin 2nz

is unity for all ¢, and fM(z g) -» sin 20z as ¢ — 0.
Second nomw,lzoatm}& ‘rule based upon §2.21. Here we take
fuleed Kﬁ FiEmhsing2r-+2)z = Oul@) 3 fhsin@r 2 (2)

where fitn) ;‘ Conl@)f$29,. In§7.41 it is shown that as ¢ >0, fiam 1

“hlle\ 2") Y0, r % n—1. This is true if we adopt the rule that
Chup) 3 [fen) = 5 [Femp =1 @
Then, a4 g->0, Fem — ¢, ¢ Qe > 1, {4)
funlesg) > sin 20z @)

t When the order of the function is {2n4-1), ¢Bgpyq DAS period 2. Henee 27 mush

en be written for « throw;
ghout.
I As shown in § 7.31, it is convenlent to make C,(g) = 1. a0

thi
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as required. Now the fiam, may be calculated by the method given
in §7.53. Then taking the positive root

i) =1 S v )

7.22. Definitions of the second solutions. By aid of §§ 7.20,
7.21 we define as follows:

fey,(2,9) = Cup(@)z ey, (2, )+ fon(2 ) {ttgn)s (1)

feg,11(7, @) = Copa(@)zCepy a2, Q) Hfana(29)  (Baneii ™ (2}

21107 @) = S201{9)2 502441 (%, )+ 20122, ) (52@ m).  (3)

8021002, ) = S242(0)7 804, 1202, ) Gon (2. 4) (baﬁ+2)- (4)

The series for f,(z,9), ¢,.(2.9) are given below. < N
First normalization beccmd\nbrmalzzatwn
Function in §7.21 \oin §7.21
o
Jenl2: 9) sin 2nz+ Elq"Sf{z) Uan@ E JEm, sin(2r 1 2)z (La)
o

Junnlmg)  sin2ntlk+ %q’&(z) O ~C:2u+1 g} Z ff?""lv sn{2r4+1) (23)

Guma(mq)  cos(n+i)t zqfc,lz} Spsalg) E gy cos(2r+ 12 (30)

Fanyal q) cos(2n+ 2)z -b 2 qf(}',(z} Sy pald) E g2t cos 2z {(48)
As g0, ( \ r=0
Cal@f P AT 1, Cul@) >0, fuleng) »sinmz;  (5)
Salgygih= ™ >1, 8.9 =0, ¢,(z9) — cosmz. (6

AX
The secon\d mormalization is merely (1) §2.2! applied to f,(z¢)
92, K"‘so we get

2 @) o
Czn Zfaﬁz 2n+1rzof§r+1 = 81 > 9’3r+1
= r=0

.”.

\ 3

= S%n—?.[ggg—i_rglg%r] == ]' (7)

The f, gare single-valued continuous functions of ¢.

. Fnl%, @), 7,(2.9) are periodic, having period =, 27, according as m
Is even or odd. The second solution comprises a non-periodic part
involving the first solution, and a periodic part with the same period
as the latter. By virtue of the factor z in the first paxt, the functions
(I)~(4) tend to toc with z. In accordance with {a) §4.14 these
solutions are unstable. Thus, if (4, ¢) is upon a houndary line &, b
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in Figs. 8, 11, the frst solution is stable, the second unstable. If
(@,q) 18 not upen &g, b,, both solutions are either (a) stable,
{b) unstable in —oo << 2 < G0,

When ¢ is positive, and ¢ is & characteristic number for a funetion
of integral order, the complete solution of Mathien’s equation is

y(z) = A ceplz,g)+ Blenna) (@ =au), @)

or ylz) = Ase 29 +Been(zq) (@ ="0by). 9
Either (8) or (9} constitutes & fundamental system of solutions.

7.30. Determination of C,{q), Su{@): fu(z: 2 Fulz q) with first
normalization in § 7.21. There are at least five methods\.of
approach, of which we select one.] We exemplify this by using the
function ' N

forlq) = Glaroalz ) HAED, (07 M)
which corresponda to the first solution ce,(2,9) Having period 2.
f.(z,q) is the second member of (2a) § 7.22 with 2.2 0. Substituting
(1) into . R
y” 4 (a—2q cos 22}y =V (2)
we get W W

C(g)e[ce+ (@ —2q cos 2z)ce, |-+ f1+ 20'1(2}0814' (a—2qcos 22)f; = 0.
,‘ "0 ) (3)

Bince ce, is a solution of (2) jq£ & =a, the[ ] vanishes leaving
ne
1420, (gee} +(a—2g cos 22)f, = 0. (4)
By hypothesis 01(0)‘%10; so we assume C,(q) = 2 o ¢ Substituting
L) r=1
. (N o _ . .
this and f,(z,gy=>sinz+ ¥ ¢'5,(2) into {4), we obtain, with the aid
of results in‘§\2.13, =
~B= —sinz+¢8{+ S+ S+
%;eei = —2 sinz_,§q3in 3z_|__1_.q2 —3sin 3z+§sin 5)2-—-...] X
8 64 3
X [a1q+f¥eqz+“eqs+"-]s
ot = = 1 1 1
afl = [Slnz+g81+q282+ ][I—E—‘qﬂng—aqa ﬂi?ﬁ-ﬁq4+'],

~Uficos2 = *Qq[é(-—sinz+sin3z)—i-'cos 2z{q§,+9‘2»§2+9’3§s+---)]-

. T The period is then 2sw, ¥ ;= 2, or infinity {see § 4.71). An infinite p‘?ﬁc’d ixn]::lies
non-periodic bounded function. t Another is given In § 10.75.

4863
y
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Equating the coefficient of ¢" to zero yields
" ' —sinz-sinz = 0, identically;
g 8748, — 20 sin z+ 2 sin z—sin 3z == 0.

Now the particular integral corresponding to sinz is — Jzcosz,
whieh is non-periodie.

Since fi{z,q) is to be periodic with period 2w, the coefficient of
sinz must vanish, so oy = 1. Thus

87+, = sin3z, giving S, = —%sin 3z. N\
g 8p+S,—20psinz 4 ZCH sin Sz—%sinz—]—gl—2§1 cos 252 0,
4 '\
80 3+ 8, — 20, sinz - ;— ?sin 3z—|— sin 5z R {03

. «\
To avoid a nen-petiodic term, oy = 0, so

o 5 \
8348, = n—(fsin3z—b%éin5z),

. 5 \' %
1V1IL 8, =
gving 2 64811132:-}-]92311102

g 85+8,— Baaslnz*gz(331n3z—gsin5z)—ésmz—

A\ %S +8,—28,¢c082z = 0,
B0 <
Sp+8,— (2a3—~——)sm z —i— 35 i-,m 32— lsf,in bz — L gin7z = 0.
32 ] 192
As before thq «coeflicient of sin z must vanish, so ay = —3/64, and
e\
\‘,. Sw S —_ E_ . Lo 1 .
“5\ 3+ 8, 192511132—}-8311152:—]—@3111 7z,
itj\mg By = -5 gin 32—t 1
& 7 1536 193*" %~ garg i 74

and so on. Thus

Cig) = Earq —=q— 2569“4— ¢+ 0(g%), (5)

36864
and

fi(z9) = sinz—Lgsingz o L paf s |
1 gdsin z+64q 5sm$z-}-§sm5z —

1 35, 8
__5léqs(_.§smSz—f—gsln53+li'83in7z)+,,_, {6)
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the series representation of the second solution, corresponding

to ce,(z,q), using the first normalization rule in §7.21 is

3
it = [1- 2

3
266

g+

31 .
768647 -+ 0{g%)

]z e, {2, q)+

. 1. 1 . ]
— —gsin3z4 g% 2} o8l —
—[—[smz qun /—{—mq (osmS —1,—35m5z)

1 35 ., 8 . |
——gﬁqa(~—3-sm.iz—}-gbmf)z—{-ﬁsm’?z)-{—
1, 17 343 | 61 . [
+40969 (-— = sin Sz—a- sin 5z - ITSSIH Tz—i—‘@sm Bz) — ] R
NG

f'e,,(z.wa)

P

& — 3 W h
T

1 NG ar o0
' 57

';T\/ &

S

Values of z

Fia. 15. Gmphs{af\feo(z, q), feylz, ¢), ¢ = 0-08.
€ )

By virtue of the first n’{ehi\bt;i' on the r.h.s. fez,¢)

unless there are values.bf ¢ = 0 for which €}
g0 in (7), fe,(z, j:%’]gin z. Also

fiey {27 +-2) — 1 1{@‘: € (q)2m veyfz,g), a function

is non-periodic,
(q) vanishes. When

with period 27, (8)

30 the condifions in § 7.20 are satisfied (see footnote respecting odd-

order fupctions).

T}{Era'i)hs of fe,(z, 0-08), fe,(z, 0-08) are depicted in Fig. 18.

731 C(q), S,.q)

for first normalization in § 7.21. The follow-

g were obtained hy procedure different from that in §7.30 [80]:

(1

fey Cy(g) =1 (by convention),t
f : 31
1 Cilg) = Q—-E).qua—"gi—ﬁq4+§6—8aqs+ 0ig®), (2)

calvghen 4=q=0 Mathieu's equation becomen g7 = 0.
¢ nﬁ,l)\;r_—_ U2 = ¢, and fey(z, 0) = Colg): ceg(z, O} Cofg)zf
C= VR and y = (V)4 1)

Thus ¥ = €12+ whers
2. Jf wetake Colg) = 1
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fe, Colg) = —q —mq”r (g*), (3)
feg Calg) = lsﬁ,qs-i—f)(q (4)
ge Sig) = q—aq"ﬁ—%ﬁ 4+§§§aq5+ (@*), (5}
ge; Splg) = q +6~mq4+ Og"), .
g $i9) = 538+ 0(a") O

7.32. C(q), 8,lq) for second normalization"iai’}§ 7.21, when
g¢—>0. By §7.41, ™ g0 the respective coefﬁcgngé' of sinmz, cosmz
in the periodic part of the series forfe, (2, ¢)ag8,(z, ¢}, tend to unity
as g — 0, the other coefficients tending to zers. By (1a)-(4a) §7.22
the coefficient of sinmz, cosmz is umty{@r all ¢, and the remainder
tend to zero with ¢. Hence when ¢>30, C, (g}, 8,,(g) for the second
normalization are the limiting fo,mis 'of these functions in the first
normalization, Retaining only the terms of lowest order in §7.31
gives

Go=1 G (( 5 (Q} =g  Glp=58{a=

g = 8(0) = ot M

Accordmgly t‘h‘ese are the forms of the varions functions as g — 0.
To ﬂlustne{te this, the values of (1) and Cy(1) were computed by
the me@od of §7.54 using {7} § 7.22. The results were

4 .\’.’ 3

C{1) = 0-0526, (2)
) C4(1) = 0-00513 ~ 1/195, (3)
These data indicate that C,(1) =1, and Cy(1) - 1/192.

7.40. Recurrence relations for f{™, g™ If (1) §7.22 is substi-
tuted in series form into (2) §7.30 and the coefficient of sin(2r4-2)2
equated to zero for » = 0, 1, 2,..., we obtain the two recurrence
relations (omitting superscripts on the f}
feq,(z, ) ' (o—4)fo—qfy = 4AFY (1)

and (8—472) for—qforsqgHfara) = AP (r = 2). (2)
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Similar procedure using (2)-(4) §7.22 leads to the following:

D' (e 1tg)fy—afy = 2400, (3)
[a—{2r+ 1}g]fmﬂ+l—"9(f2r+3+f2r—1) = 2(2r+DAGHY (r21). (4
geann{z-4): (G—1—q)g,—qgy = —2BEn+D, . (5)
[a—(2r+ 1) ]g0 12— §GersstGor) = — 22+ DBFEY (r 2 1). (8)
ean+2(2, 9} agy—qds = U, ' ’ (7).
(0—4)ga—qlga+290) = — 4B, {8)

(@— 472y —q(Gareat Gors) = —4rBED (r 22 _L9)

7.41. Behaviour of f,, §,, as ¢ - 0. By §3.32, AJ" > };'B‘,\:;?" -1,
and the remaining A, B - 0 as ¢ 0. We shall now demonstrate
that f,, §,, have similar properties. We take the pai"ts}zulaar case of
fey(2,q). By §§2.151, 3.32, 3.33, 7.31, we have

G = g, AP — OO AP,
AP = 0lg),  Glg) = O Fhen g 0. (1)
Snce for4y = firsn/Calg), (3), (4) §7.40 midly be written |
(a—1+)f,—afs 2(g) AP, @)

=) a4l o) = 22 0GDAT =1 @)
Substituting for @, 4, fro{\:‘(l’) into (2) gives

(B+gba*+ . Mi—afs = 0g). (4)
Now assume that {fs:t%nds to a constant value as ¢~ 0. Then
Ofi = afal(8+9) = 41— fs > 0. (5)
Substitut-ipg:?ﬁ'om {1) into (3) with r = 1, 2, we get
O gttt aFeb ) = 660 (6)
AN (gt g — 16)f,— gy ) = 0@ (7)

Since f; - a constant as g 0, it follows that f; - 0. Similarly this
tesult may he derived for all the f of higher order than 5. Neglecting
710 (7), we obtain

_— Js = — s (8)
ubst-;t-uting from (5}, (8) into (6} yields
(e e+ .+ Frg— §a*+ M = 6G(0) (©)

H -
eNce ag ¢ > 0, Cylg) —~ Foq?/192. (10)
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This result is compatible with (4) §7.31, provided f, =1 as ¢ — 0, so
the assumption above (5) has been justified.

By similar analysis it may be shown that f{™ and @ — 1, while
the remaining f, § - 0 as g - 0. This latter result is independent of
the normalization, which must be compatible with if. The two
normalizations in § 7.21 fulfil this requirement,

7.42. Behaviour of f,, g, as ¢~ 0. Since f§, = [{® /0y,
we get by aid of (4} §7.31
Q"

. Jorr > 192)‘_'2“1/?3, R (1}
From §7.41, when ¢ - 0, it may be deduced that fl,'fg“&re O(q),
[: = 0(g%), f; = O(g%), and so on. Since f; > 1, it follows from (1)
that f\, fs, fs, fo = o0, but this is inconsequential - Adso by analysis
of the type in §7.41 it may be shown that C‘m@\}',’ S,{q) are O{g™).
Hence when ¢ = 0, if m = ‘2)?2, {_1} alt f, ¢ aforder lower than m,

oy i p \:
Dy K7,
and ;: 1 of order higher than m,dre” infinite. Thus, including

an AR I . .
fim glm) there are 3 +1] coeffidients in the series which bacome

infinite. As before, this is ippéiﬁsequentia.l.

7.50. Theory underj!yi}i'g computation of f,, g,. The recur-
rence relation (4) §740\5 a complete linear difference equation of
the second order. Lol By, 11, o4y be independent solutions of

'.Lff'.._’(?’r_ll']}2](:%-{—1'_?(62:‘1 3t f2-1) = 0, )
and f,. ., bd :a\ particular solution of (4) §7.40. Then the general
solution :(){lhle latter is

.,"\\“ Uy = forn1H0bari1tedarny, (2)
Wh\ér:'é 3, € are arbitrary constants. As shown in §3.21, one solution
\nf( 1) tends to zero, the other to infinity as r - 400, Now the 4
in the series for ce,,.(z,¢) satisfy a relation of the form (1), and
they tend to zero as r - 4. Hence we may replace 8¢,z DY
§A,, .1, 8 being a constant to be determined. For convergence of the
series containing f,.., we must have f, ., -0 as r - -+oco. Then
from (2)
Wariy = (Ui —eyrin) = forn+-845, >0 asr—too. (3)
Now choase a value of r = s, which is such that: (1) 14,,,,| decreases
rapidly with increase in 7, (2) f,,., say, vanishes to an adeguate
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aumber of decimal places, (3) [wy,_y; 3 Wa,a|. Since e is arbitrary,
let it be such that when r = &, w,,,; = 0. Then for r <C s,

Jarsy = Wop—OAZHY. {4)
The value of 8 denends for given @, ¢, m upon the value of 5. Since
furs1, e3pressed to a limited number of decimal places, is independent
of s (if large enough}, it follows that w,, ,, is dependent upon s. Now
Wypyy = Ugpyq—€Wfgp.1, SO € Varies with s, as we should expect.

7.51. Galculation of the win § 7.50. The w satisfy (4} §7.40, so ¢
with # = 5, we put wy,; = 0, and neglect wy,.;. Using tabular
values of the' 4 [8%, 95}, we calculate D

7N
tay = — 3t DGO AT

Also with r = s and (r—1) for 7, since Wy, = 0, (4} § 1748 gives
[a“(Zr-— 1)2]”2;----1—§‘w2r—3 = 2(%r— l}Ag’i‘fi!, (2)

Sinee wy,.; is known from (1), wy._g may be gdlchlated from (2).
Again with (r—2) for r in (4) §7.40, wy,._s ma¥ be calculated using
the values of ey, s, ty.5. Proceeding inlthis way we ultimately
reach r = 1. Then R\

(a—Q)u*a—g(wI—f—-i}!g):% 84, (3)
from which w, may be c-aicul&ted,’éfﬁce w,, wy are known.

7.52. Determination of,@';’ib (4) § 7.50. Substituting from this
equation into (3) §7.40 givos

(0—1-+-q)(02 B4,)—qluwy—Bdy) = 24T, "

Also by (2) §3.10 ) gAy = (a—1—g)4;. @
Then from (1 )3\@}@3 obtain

A\ 1 jfa—-1+q ]t 3

o = ﬂ"[(—q‘)w“] g v

Sincethe values of all quantities on the r.h.s. of (3) are known from

?:}.51, f may be calculated. Then the f,,, may be computed using
§7.50.

753. Calculation of the f,., in fe;(z,8). Here ¢=35,
9= —0-43594 36013 20, We divide (4) § 7.40 throughout by ¢, and
substitute 4 for f, since w4, is a solution. Then

qml[a“@"‘f'1)2]w2r-|1_(w2r+3+wsr—1) = 2(27’”*_1)‘4%&19_1' (1)

¥ Tts value need not be known.
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We now choose s to conform with the conditions specified helow
(3) §7.50. Usnally several trial s will be required at this stage,

TaBLE 8. Numerical data for evaluation of fi¥,,

3=7, w15:0

in fe,{z, 8)

(2r1p—a

r 2re1 T (-1, (—1r22r+ 148, L f
0 I ¢ 17049, ., 062641 79353, 015660 44838,
i 3 117945, . . 0-73885 55383, 0-55414_ 16439,
2 5 3-17949. .. 0-24505 69630, 030832 12045,
3 7 617949 .. 0-04030 13498, 0-07059, 73618,
4 8 L 1017949 .. .. 398 4p422 .\393 51200,
5 11 1517949... .. 26 33419, 172 41903,
6 13 21-17949. ., | 1 24547, AN 4 08777,
7 15 2817949... | ..... 4424, W\ L. 16580,
8 17 36:17049, .. | ..., .. 122, ¢ ... .. 520,
9 19 451749, | L 2,“’:,\ ,,,,, .12,

- Y

*; D (-1,

T (= 1)ritg, g (- 1)'s:t£%1 = Diogy 4y — AL, (- 1)r+1
0 1:54597 72, 1- u?s&s T4z . 0-48731 97,
1 1-04543 43, 127226 89,, 0-22683 46,
2 0-24124 68,, {OM2197 47, 0-18072 79,,
3 0-02792 94, 3006939 67, 0-04148 T2
4 .. 187 03, j~. 686 18, ..499 15,
5 I . ...45 34, .. 3T 78,
N 16, 2 14,, el 187,
; zero oi" ..... .735 R .Tes
N\
2 %
eg.r—=8 »{m Tab]e 8. With » = g in (1), we put w,,,,; = 0, neglect

Wograr de obtain

Woy 3 = —2{2s+1)AL, gL, (2)
mCh‘oosmg r=g¢="1 4,5 = —4-424, 107, and (2) gives
V Wiy == 30X 4-424, X 10-7/8 = 1-6590, x 10-5, {3)

Taking » = 6 in (1),

hypothesis, we get
—${169-43594...}1-6590, X 10~ —ap,, = 2 x |- 245470>< 16-%,

giving wyy = —T-56,5% 10-5, (4)

Taking r = 5, 4,, = —2-63341 93X 10, and using w,,, w,, in (1)
we find that
(5)

Ayg = 124547, 105, so with wy, = 0, by

wy = 18703, x 109,
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Proceeding in this way we obtain the values in column 6, Table 8.

Using (3} § 7.52 yields
§ = 1-72194 54961. (6}

Next we calculate #4(9,, and get column 7. Finally subtraction of
the corresponding values in column 7 from those in column 6 yields
the f3t ;.
Check that conditions in §7.60 are satisfied.
(1) The |A,,,,| decrease rapidly with increase inr 2= 3; see column
4, Table 8. ‘
(2) With r = 7, fy; vanishes to seven decimal places, whichais
adequate bere. PR D
(3) Writing (r5-1} for 7 in (1), we get ~\ y
[a—(2r+ 3103, 13— q(W0gpsst-Wors) = A3 ()
w,, = 0, by hypothesis, while for r =7, (2r+3)* 2> ¢ [~,'“s} {7) becomes
approximately D
W st Qg5 (21 3 = —248,6/(0r+3). (8)
For r > 3, the data in column 6, Table 8, shew that the w decrease
rapidly with increase in r.f Then |w| > 1w/, 80 in (8) the torm
In w,,. .. may be neglected. Hence * )
Wyp o2 —2A,,/17 =3B X 1:92,x 10-%/17
(1441070, (9)
Thus  fuygfon;,| o 1-6590600-5/1-44 X 1070 o2 1-15X 10°. (10)
We have shown, therefore, that the imposed conditions are satisfied.
It is of interest to reimark that in a second set of calculations with
Wy = 0, § = 1-946,Which exceeds the value ut (6) above, while for
agiven r Byﬁﬁ\e’iceeds that in Table 8. “This is in accordance with
§7'5% Tl{&f_??,-ﬂ are in agreement to the eighth decimal place,
r=0to.n"
7-{&‘; Normalization. We use the second normalization rule in
¥7.21."Then from the values of f;,,, in Table 8

S f2,. = 030424 88, (1)
r=g

Substituting in (7) §7.22, we obtain
Cy(q) = 1/(0-30424 88,)!
— 1-81294 87, @)
t Since s, - 0, it might be preferable to say that fuy,, ofifgpsq| docreases rapidly

with § .
‘;ﬂ:ucrea% in r, the case of r = 7 being omitted.
X
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Multiplying the figures in column 8, Table 8, by (2) yields eolumn 3,
Table 9. Then

o3
fo,(z, 8) = (1-812...)zce,(z.8)+ 3 S sin(2r+1)a. (3)
r=0
TasLE 9
T 4+l A, = 01(?)_52}‘--1

¢ 1 0-84722 67, Z\

1 3 041123 05,

2 5 0-32765 04, Ko N

3 7 0-07517 80, N\

4 9 0-00904 93, e

5 11 0-00068 50,

6 131 000003 58, s\

T 000000 13¢ &

7.55. Formulae for calculating f,, ggm’]', Jon+e- These may be
derived by analysis similar to that in.§’.‘.\5'0, and we get:

T =y~ ARD 0
Beamaalss@): gD =y, —OBEAD, %)
(= ~ A ffem1g Wyt -—3. (4)
<~ 2B\ ¢ ] g
8n4a(: 9): Ke brih” = wy, ., — OB, (5)
P\ 9—--1_(1{: __aw) (®)
»\x‘\ B, 2 g of

Thep “'é_edurc in caleulating the f, ¢ is identical in form with that
im§§7.53, 7.54, and the notmalization rule at (7} §7.22 is used to

~(determine C,,(g), ,(g).
\ .
N\ 7.60, Second solutions corresponding to ce,,(z, —g), se,{z, —4)-
These are derived by writing (w2} for z in (1)—(4) §7.22. Thus,
with the aid of (2)-(5) §2.18, we obtain

feg, (2, —q) '
= (1) ey, (dr—2,¢) (ay,) (1)

= —Czn(q)[(%w—z)cezn(z, @) (—1 T (—1y éf’;’zsin(2r+2)z],
r=0
(2)
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7.60]
{egﬂﬂ.(z! _"Q)
= (—1)" geznﬂ(‘%ﬂ—“'zs 9)  {beni1) (3)
= Sznu(!l)[(%”'_z)cezn iz —g)+(— l)ﬂrgn (—1ygsisin(2r+ 1)2];
(4)
geﬁnﬂ(z! _9)
= (—l)"f82n+1(-%17-—z, Q) (a2n+1) {5)
= 02n+1(?)[{é77_z)se2n+1(z: _9}+(_ l)nfgn(_ 1)’fé§11—1) 008{2:"—}_1)2]:‘\
(16}
ean 2l —¢) O ’
= (—-1)“gezn+g{%w—-z, q) {bansa) ("}«. (7)

= Ssn+z(q)[(%ﬂ— 2)8gp 1oz, —@)+(—1)" rZﬂ (— 1)’9&3’?’.@&‘2fz] . (8)

Then by §7.22, when ¢ — 0, N
fe,(z, —g) - +sinmz,  ge,lz —.gg)\’«e»\—i—cos mz,

the multipliers (— 13 ensuring the convengional positive signs. Since
0e,(z, —g) > +-cosmz and se,,(2, —q) —»y-sinmz, we obtain the two
solutions of y"+m2y = 0, which is the.degenerate form of Mathieu’s
equation when ¢ = 0.

The complete solution of y7% (a4-2¢ cos 2z)y = 0 for ¢ positive,
ie. ¢ negative in the standdrd form, is obtained from (8), (9) §7.22
hy writing —q for g, the‘characteristic numbers being those above
and in §2.18,

7.61. Second s\i:)flltltions corresponding to Ce,(z, q), Se,(z, ¢)-
These are so utions of y"—{a—2g cosh 22)y = 0, corresponding to
¢ =a,, a=b,, respectively. They are derived from (1)-(4) §7.22
by writing%¥» for 2. Thus for the second normalization of §7.21, with
the a&'d;og (2)-(5) § 2.30, we get:

Fey,(z,¢) = —ife,,(z2i,q)
= Coulg)2 Cooe, @)+ Fanlea0) C
Fey,(2,9) = —ife,,,(2i,9)
= Cyiz(@)2 Ceygp a2, )+ Fopn(%9) (@) (2)
Gegnia(2,9) = gegnin(2i, )
= — (@286, (2, ¢)+ Gans1(%9)  (Bansa); (3)
Gegniz(z, q) = gegnsalzisg)
= —842(9)2 584, 15(2 )+ Ganal®: g) (bansa) (%)
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By writing iz for z in the third members of (1a)-(4a)§ 7.22, we obtain

EAu(Z, g} = Oﬁn(q} Z féﬂ)z Sillh(2?’+ 2}2, (1 a)
=0

‘Ejn+l(z= ";?) = Ozn-;-x(Q') Zﬂ é‘gi-;l}Sinh{gr"i'l)Z; (23)

G2n+1(zs 9) = SZn+1(Q) Zogégﬁin 00811{2”“—*" 1)2, (3 a‘)
r=

o Q4
Gﬁn+2{z: Q) = Sﬁﬂ.+2(g) zogg‘n%z) cosh 2rz. { “\ (J:a}
r= ¢\,

By §7.22, when ¢ 0, Ye, (2, ¢} > Fsinhmez, Gem(z,'ql}':-:— —+cosh mz,
The complete solution of the differential equatior}'f{}i‘.g positive is

¥(2) = A Coplz.q)+ B Fe, z,0)-\(4) (%)
or ylz) = fTSem(z, QJ—['E Gem(% ¥} (bm}i {6)
RS

according as the characteristic 1'1:11131’[;»33'(x %8 a,, or b,. Either (5) or
(6) constitutes a fundamental systémivof solutions for the modified
Mathieu functions of integral order,

7.62. Second solutions cdrfésponding t0 Ce, (2, —g), Se,, (2, —q).
These are solutions of y/—{a-- 2gcosh 22}y = 0. They are derived
from (1)~(4}§7.61 by;t&fiting (§mi+z) for z, since this alters the sign
of ¢ in the equati&@n §7.61. Thus {from (1) §7.61 we have
('—' l)nFeﬂn(%WijT%! g)

\.\\~ (1)
Nowyif z is real, the r.h.s, represents a complex function, but i is
~gxpedient that the function defined should be real. Since Cey,(z, —¢)
i a first solution of the differential equation, there is no need fo

retain =i Ce,, (2, —g). Accordingly we adopt the following defini-
tions;

= Co @i +2)Cene,— )+ (— 1 § (— 1yapg,sinh 2r-+-2)2]
\ 4 r={

Fei'n.{z’ '_9)

= Conl@[2 Cogylz, —g)+(— 1) 3 (—1yfgn,sinh(2r+2)2] (@)
r= (2)

T This result is obtained slso, if we take —ifey,(iz, —gq}, using (1) § 7.60.
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Fe?rrﬂ(z’ _q)
= —8, 1—1(9}[3 Ceppeanlz, —9)+ (e Zu (— 1)giniV sinh(2r+ I)Z]
(b2.=1+1); (3)
Gey,ifz — )
= Cpal@f#Ses, i, —a1H(— 1" 3 (—1)1fiE5E0 coshizr+1)e]
(Gansa)s (4
Geﬁn-+2{z: "—g) y
= — Sy 2{9) [z Sey,, o2, -+ (1) E (_l)rggi’i_ﬂ+2) cosh 2?'2] O\’
r=0 “~f\\~“«
(banale) (0)
By §7.22, when ¢ - 0, N
Fe,(z, —q) — +sinhmaz, Ge, (2, —q) > -[-Cl')wﬂé iz,
these being solutions of y'—m?y = 0, the degenezate’ form of the
modified Mathieu equation when ¢ = 0. As in §7:60 the multipliers '
(—1)* ensure the conventional positive signs, Xl complete solution
of y"—{a-+2gcosh 2z)y = 0 for g positive,yi'e. ¢ negative in the
standard form, is obtained by writing ¢ for ¢ in (5), (6) §7.61, the
characteristic numbers being those aJ}OWé and in §2.31.
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VIII
SOLUTIONS IN SERIES OF BESSEL FUNCTIONS

8.10. First solution of %'—(a—2gcosh2z)y = 0, ¢ > 0. Let
u = 2kcoshz, k* = ¢ > 0, and the equation becomes [52]

(W= 4k2)y" 4wy (w2~ = 0, 3y
with p* = (z4-2%%). Assume a solution ' \
¥= 20{“ l)rc2r' 2,(%), "\:\J (2)
= ¢ '\ *
~ and substitute it into {1); then we get o
S (— 1Y en [(u— 4Tl + fﬂ—gﬂ%J——O 3)
jd ]
From Bessel's equation
wrJy,+ uJ;,—i—uUKx\s{r 2L, (4)
and by recurrence relations Q) _
4J;r 2r, ”2‘}'21.'+J2r+2' (5)
Substituting (4}, (5) into (3)}9‘@.(13 to '
2 (1[4 a) =y )] = 0 (6)

since 242—p? = —a& Equ&tmg cocflicients of J,, to zero (r =0, 1,
2,...), we obtam b\

gy Qs O ac,— k%, = 0, ' (7)
Jy N (@—4)e,—k¥{eg+2e,) = 0, _ (8)
S NOT (a—trte,—egatoy ) = 0 (> 2). ®)

Now? (\9) is a linear difference equation of the second order, and it
ha& two independent solutions, so the complete solution takes the

ey = 762r+8d2r’ (10)
where y, & are arbitrary constants. When » - -0, ¢4, — 0, while
by §3.21 ld,| > o0 in such a way that |09, 45) ~ 4{r-+1)%¢-1. Thus
by 2 § 8.50, (2} would diverge, so the solution d,, is inadmissible,
ie. 3 = 0.1 Since (7)=(9) are identical in form with the recurrence
relations (1) §3.10 for the 4 in

Cey,(2,q) = § APV oosh 2rz  (a,,), (11)

=l
+ See § 3.21,
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it follows that ¢,, is a constant multiple of 42", Hence

K 2(_1 y AEM T, (9 cosh 2) - (12)

is & solution of %" — (@ — 2g cosh 2z)y = 0. Now hoth {11), (12) are even
functions of z with pericd =i and they satisfy this equation for the
same {2,4). Thus one is a constant multiple of the other. Accordingly

Cey (2.9} = K § (— 1y AW, (2o cosh z). (13)

By 2° §8.50 this series is absolutely and uniformly convergent in

any finite part of the z-plane. Putting z = 4«1 gives )

K= 092:;(2773 g)'(A(gn) \ . (14)

since all the B.F. vanish except when r = 0, giving J,(0) w‘l Hence
from (13), (14) it foliows that “\

o) = 472 Z (1P AgoI, 2k (3). (15)

S\
By taking « = 2k sinh zin the differential eqﬁatlon and proceeding
as shown above, we derive the solutlon N

X ZA‘g."’J;,(% a,mh z). - (16)

This is even with period =i, and is also a constant mulblple of
Cey,2,q). With z = 0, K, —‘Ce\zn{o g)/AE™, s0

Cegulz, ) = cel"—(o )Z A‘zf’.’”J,.(Zk sinhz) (ay,). (17}

Thus (15}, ( (17) are altematwe forms of the frst solution.
The multiplierg K pertaining to various functions in the sections
which follow, a% derived in Chapter X.

8.11. The second solution. Since the recurrence relations for the
Besﬂe{\fuhetions ¥,, are identical in form with those for J,,, and both
functiong satisfy the same differential equation, it follows from (15),
(17)§8.10 that the function defined by

Fey:n{z,q) 82:1({%‘:), q) Z )rAéan)}fzf(Qk cosh z} (]COSh z2f > 1
(Dt

ey, {0, . jsinhz| >1
— i;mn)m z ARMY, 2k sinh z) ( R{z) >0
r=0

t The y in Fey signifies the I'-Bessel function.

(2)
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is an independent solution for ¢ = a,,. The restrictions indicated
on the right are necessary for absolute and uniform convergence,
and are obtained in 3° §8.50. Actually, although both series are
non-uniformly convergent as |coshz| or |sinhz| -1, they converge
when these arguments are unity, but the rate of convergerce is dead
slow! Solutions in B.F. products are free from these disadvantages
(see §13.61).

Using the well-known expansion for the ¥ funetions in (1), (2), we
find that N\

Fey,,(z,q) = [y—l—lo ( OOQE z)] Ce,, (2, ¢)1-two double sumimations,
NS “
(3)

y being Euler’s constant. The first member on ~the’r.h.s. may be
written N

9 )

~[y+logk-+logd(1te*)t2]ley, (2. 9), (4)

m ".\ /

from which it is clear that neither (1'} nor (2) is periodic in z. In
Chapter XIII we shall obtain a rela.t10nsh1p between Fey,,(z.¢) and
the alternative second solutiont Fem(z g) of Chapter VIL. It is not
possible to do' this using the' series (1), (2}, since the non-uniform
convergence of (1) and the® dlvergence of (2) at the origin renders
term-by-term dlfferentta,mon invalid. This applies to kindred func-
tions in succeedin s@e%mns

The complete solutlon of the equation, corresponding to & = @gp, 18

Z‘:\ / Y= 4 ('e2n EN g}+BFey2ﬂ 2, q)’ (5)

P\
where_4-~J& ate arbitrary constants. This constitutes a fundamental
. system.

md 312 The sotutions Ce,,,(z,9), Fey,, n(z,9). By analysis
\ gimilar to that in §8.10, we obtain (1), (3) below:

Cegpa(2,9)
— - annlimg) Z 1y AEREDT, (kcoshz) (Ggery) - (1)

}ﬂA(S?Hl)
cey, 4(0,q) had . .y .
= kﬁtamﬁ cothz z (2r+ 1YA@VS,, L. (2k sinh 2); (2)
{ The result of so doing to {1} givea Fey,,(0,¢) ~ U, which is untrue by virtue

of (97 § 13.3¢L.
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F9Y2n+1(z Q)

- -0 S CUARPT k) @)
Bgn+1(0) n
- CI:AE;?E 2 9) coth 2 Z (2rr+I)A‘z?;ﬁlz’l’;rﬂ(%smhz) (4)

The restrictions at {1}, (2) §8.11 apply to (3), (4) respectlvely.

To derive (2), (4}, we observe that Ce,, (2, ¢) is an even function _
of 2, whereas J,,.;(2%sinhz) is an odd one. 1f we multiply the lattér
by the odd function coth z the product function is even. Assuming that
y = cothzw(u), with ¥ = 2ksinh z, and proceeding as in § 8.1¢ leads
to the series solutions (2), (4). By virtue of the logarithmic texhrin the
expansion of ¥;,.,,, these solutions are non-periodic, but {1), (2} have
peried 2n¢. The complete solution fakes the same fOrfh.\&s (5) §8.11.

8.13. The solutions Se,(2,9), Gey,(z,9). As Qefore we assume 8
Bessel series with argument » = 2k coshz, nadhély,
wiu) = Z (—=1y "2.—4; z:-ln(“): (1)
this heing an even funetion of z. Bu‘t E;eznﬂ z,q) is odd in z, so we
take tl &

e the odd funetion tanhzw(u} (2)
and substitute 1t in the dlffere}rtldl equation. Then the transformed
equation is [62] \\

(a2’ X - (ur—ptu-8E d - (wfu) = 0. (3)
Proceeding as in §'&IO we find that
as
\“ g = K (21 )BEAY, (4)
K, being &‘ngtant multiplier. Hence
\ﬁ-\nhzw(u) tanh z z (= 1)7(2r4 1) BT 0,12k cosh 2) (5)
is & first solution of 4" — (@— 2q cosh 22)y corresponding to the charac-
teristic number g — & ans1- By analysis of the typein§8. 10 we obtain
ge?u i—l(z q} .

Gaiﬁ-l(Eﬂ' fi‘ tanh z Z (_l)r 23"—}—1)8(2?-11:[1}‘]2:'-!-1(2}6 COSh Z) (b2n+l)

kB(EnH) £ ®)
~ S0, 9) & . -
LB(%&., fE} Z BE?." 11)J2r+1 2k sinh Z) . (")

881
Y
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These representations both have period 2x3. Since sinh z is odd in z,
(7) was obtained by substituting (1) with » = 2fsinhz in the
differential equation.

The remaining solutions derived as shown above and in previous
sections are

GeY‘Zn +1 (Z g}

_ Suulima) < —1y(2r+1)BEYY, o (2kcosh 2} (b, ,,)
2r+1 2r+ \ 1

k8(2n+1)
N
0 isd 2 AN
~ Sl >, BEVOL s (2ksinh) )

g W

These are the second solutions corresponding j:qwiﬁj: (7). By virtue
of the logarithmic term in the expansion of,tr})e\l’ funetion, (8), {9)
are non-periodic. Attention is drawn to blte" restrictions and com-

ments in § 8,11, 0,"§:
Seg,4(2.9) ,';:\
' 1
= —%%%Ej;)g}tanhz Z {—=X ) (2?‘—1—2)3‘23';32’.);”2{2}{ coshz}y (by,.0)
' 3y (10)
0,
= Sfﬁ'}ééﬂ Dooth» Z Gr -2} BET, o(2ksinh 2). @

The B.F. in (10)\{\11) being of e¢ven order are both even in z, but
the hyperbotic Multipliers are both odd. Hence the representations
are odd in %, (lso they have period .

The segand solutions {apart from Ge,(z,q) in Chapter VII) corre-
spondkg to (10), (11) are

Gngn-fﬂ(z} g)
PR \ " sel AT, q) -
O s S e i gskeo) o
=0 (12)
_Segy o0 . _
= k?z'jg?i(n*g)mthz z (2r-+2)BEn Y, 5(2ksinh 2). (13)

See remarks below {9} above. The complete solution takes the form
y = A8e,(2,9)+ By, (z.q). a4

8.14. The solutions ek, (2,9), Gek,(2,¢q). These are derived
from §88.11-8.13 by expressing the Y functions in the series for



SOLUTIGNS IN SERIES OF BESSEL FUNCTIONS 163

8.14]
Feynlz 4} Gey, (2 g) in terms of the J- and K -Bessel functions. Thus
K () = Lmetv+DiH D (iy), ()
. 2 _ _
s Y fu) = () —~e K (—iu). (2)

Writing v = 27, and applying (2) to {1) §8.11 yields

Feyﬂu(z: 9‘) = A-E-)z.n)._.__ W

=1Ih-

<[ 3 gk eosha)— - K2 o9} O
=0 r=0 '

O

(k> 0, Jeoshz] > 1). (k) (3)

= i Cey, (z.¢)—2Feky, (2, 0), - O (4)
where we adopt the definition Y,
: . \V
Feky, (2, q) = 2’;(1?:”9 AZVEK, { 25;1 cosh 2) (agm) (5)
In like manner (2) §8.11 yields, '. \
Fek,,(z,9) = ce(0:4) 5 (;1)rA;=;n>K2,(—2@k sinh ). (6)
H ..'.TA{()ZH}“’ =

Since F e¥s,(2,q), Tey, { q\re real if z is real, it follows from (4} that
Fek,,(z,q) is complaxg The restrictions at (1}, {2) §8.11 apply here,
and convergence 1s\cons,1dered in §8.50, By virtue of the logarithmic
term in the s ricg‘for the A function, (5), () are non- -periodie in 2.
These I‘emark& pply also to the remaining functions given below:

withe™\& \ Fevzm(z g} = i[Ceyy a2, @)+ 2 Feky iz 9], (7)
2n+1(z,g)
ey, () & .
- :;?2(2.;; vl z ARHVE, | (—2ik cosh z) {@gn41) (8)

i 0 J _ o
wm}zn Lﬁ}e‘)thz Z( (?r+1)4§3ﬂ11m . u(—2iksinhz). (9}

Geyy, (2, q) = i[Seq, (2. g} +2 Gk, a2 q}); {10)
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with
ks, 1(2,9)
_ SeapnGm ), > @rt DBy o(—2ikcosh ) (by,,)
ke B{n+D < a
El,ei,,((}g«r)m R D) o
wi}}tlwn (—1yBEAVK, . (— 2iksinh z). (12)
*=0
Geyzn+2{z) 9) = i:Sezn+2(zs Q)'_QGekEn-i E(zs Q)E £\ (13)
with
G9k2n+2(z g) \'\\
S’Bn ( 77'!'?) N 7+ 8) . :\,:_
= rr?c{é‘:“m tanh.z ’Z} (2r+2) B3t K2r+2(—‘2"'f‘1925h z) (bzn&zi)
] SB',H (0,9} 2 e . “ ,\' o
= — w_}jﬂnli‘*_":m coth z z (—1)(2r4 2) BESOR, . (— 2k sinhz).
Y (15)
If desired the X functions may be e‘éptewed in terms of Hankel
tunctions by aid of (1). O\

The complete solutions gwen at (5) §8.11, (14) §8.13 may some-
times be unsuitable. How evers b any complete solution of that type
it ig permissible to subsmtu‘m Fek,, for Fey,, and Gek,, for Gey,,
by virtue of (4), (7), (IO}“ (13).

8.20. First sol ém’ of y"4-(a—2gcos 2z)y = 0. By writing —iz
for z in the series,fo Cem, Se,, in §§8.10, 8.12, 8.13 we obtain

oou(rs0) = @3(;-;1’, L (~-1)fA<ﬂn-34,(2k c0s2)  (a,) ()
P
& ef;fa-j}z<-wv,( 2ksinz), (2)

’o

RS cey, \ N '
\é%“uﬂ(z, 9= _;c";(}ﬁ(fg}q Z (— 1y AGOL,, 1 {2k c0s2) (@g,41) (3)

ceﬁn *1(0 q
1A(2u+l)

Lotzz (—1)(2r+ 1) ARV, | (2ksinz), (4)

sey ;
S€3n41(2,q) = i’:B}Z,J?fD? tanz Z (—1y(2r+ BRI, (2k cos:z()5 |
{62?1+1)

883, 4+1(0,¢) N . )
= ,{23{;;4 nq Z (=1 BE~ iV, | (2ksin z), {6}

=i
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Be, aralzd, ”
seen_m(z: 9 = — ;a;{;(gn 2;1’ tanzZ( 1y(2r-+ 2)BEY 50, 15(2K cos2)
(b2n+2) (7)

- “e2n+-’;{..{.}.__ D ootz Z (— 1)7(2r4-2)BEUADL,, ,o(2ksinz). (8)
r={

/ﬁo. Solutions of ¥"—(a+2gcosh2z)y = 0, ¢ > 0. If we write
(3mi+z) for z in y"—{(a—2g cosh 2z)y = 0, it takes the above form,
ie. the sign of ¢ is changed. Making this change of variable in series
derived in §8.10 et seq. leads to the following representations:t

SFenle—g) = (—1)"Cogy(bmite,q) (330) &

nceZn('lﬂ’ g) (2n} s,,\ ‘
= {—1) _‘%;m Z AGME, (2 sinh z) ~\ (2)

0 Y
— (=1 9822({2“)? Z (— 1)*Af2"->@,(z;~.3}osh 2. (3)
The multiplier (—1)* is needed by virtue of th&f\lll §2.31.
Fe}zn(z, ‘_Q) - ’\'_])HbeYQH( 7”—1—3 Q') (a'2n) (4}
— 1)n“’22¢4 ;: 1) Z { rAfﬂﬂ’Ir;, 2iksinhz)  (5)
0, :

= {— "ej;fz 4 2‘4(2?&)1;,(211;@03}1 2). (8)
Feky, (z, —q) = (-—1)"]_*\9,[{%(2-7”—1—2, q) . (N
Ua»‘"‘“'.%:;f(::) Z AEVEK, (2ksinh 2) (%)

N/ nc{ u,({) g) > ("?’l} t
\; 1) JA[M) Z (— 1Y AQVE, (2keoshz).  (9)
Fehn@\ﬂ) == i Coy, (2, —g)— 2 Fely, (2, —4) (10)

eEn\Z’ ~—9‘
- (-—-l}nutseh 1(—;},11-?:-5--3,9') ({)211-1-1) (11)
= —l)ns‘“;:};;,‘;j’g cothz z (2r+ 1) BEA,, o (2ksinhz)  (12)
8

== (Eﬁii?l?) 2 (— 1) BEYAV L, 4 (2k coshz). (13)

r=0
L]:"lﬁﬂlzlagg %.9,12,13, 19, 22, 23, 29, 32, 53, '39 are given in reference [6] without
‘ttipliers external to the ¥ "‘ The method of derivation differs from that used here.
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Fey,,1{z, —q)

= (— 14 Geyyyaa{imit2,9) {ban+1) (14)
= (— l)“*lisei’}?z(ffnq cothz Z (—1y(2r-+1)BEVVY,,  (Zik sinh 2)
70 (15)
= (- 1)“+1z8"2§;£1? Z BEYY,, 3 (%k coshz). )

Feky, (2, —q) ~
= (—1)" Geky,y(dmitz.q) N

A
= (— 1)'1332“*5({;:’ f) cothz Z (2r-+1 )Bgaﬁ” _’2?_@@@31;111 2} (18)
585, ¢ {0, " O
— (-l 2 (1 B0 Ky (USO8 ). (19)
Fey2n+1( 2 _Q) - zCeM 1( _Q)*gFelﬁn-l l(z ) (20)
Segnsa1(, — ) \‘

= (—1)"Yi Cegpyq(3mit2,4) (agn,+1) (21)
- (ﬁl)“”“ﬁ’;l?ifi,” Z A1, , ok sinh ) (22)

f‘=|)

= (—1)n (_ﬁ?g_ni_l(o Q) anhz Z (—1y ()?-_|_1)A(2§_ﬂ*1111 +1{2k coshz).

,}A(?.n +1)’“ (95)
\ =0 ,,‘
Geyﬁn+l(z! '_Q) N ‘\
= (—I)“‘”f@’eymi Tz, 9)  (a,41) (24)
= {.— .};l; ezn+1(_“:’_'__i 2 (-1 f‘A(21‘|i1)}72 {2k sinh z) (25)

\\ ."A(?.n 1

“\:”%ﬂ(_])n 11 Qe2u+l( 9‘_ tanh z Z (..)1"—{ 4%1111)}71‘ ](Zik COS}I Z). (2(5)

2 8

o\ ,{AH:H 1)
\ 'Gekmﬂ(z, —q)

= {—1)" Fekznﬂ(%’”\i‘i'é q) _ {27)
= (= 1)’**1'39:;:1‘f2€:1?) Z AEMDE, (9 sinhz) (28)
r=0
cey, ,1(0, = N : :
= (=) ii‘lg“ ?;)‘ra-nhz z (—1)(2r+- 1) AR DK, . (2k cosh z). (29)
=1

(19)?’2” N 1(2, “_Q) =1 bezrwl(z )+ 2 Gck2n+l{z: _‘Q) (BU)
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Seﬂn I—Z( Q) -
= ('— )n+1$82n—'-2{%’7ﬂ:+z Q) {52n+2) (31)

o (-1 )”“Si‘;ﬁﬁ(zlﬁ? cothz z (2r-2) BEAEDT, | (Oksinhz)  (32)

. ),Lheznva( ) tanhs Z (—1y(2r+ 2BV, , (2 coshz). (33)

B(‘En ?\
Ge}'zn 4§ 2(:3, _Q) ’ £\
= (—1)*+* Geyy, . ld7it7,9) (bgpis) ) (331

= Fl}"‘%ﬁ’?coﬂw > (=1 2 BRI T ik sinbie) (35)
g - £
= (— 1)n+1se2ﬂré‘_‘__‘}_:?_) tanhz z (2r+-2) BETSOY, (@fheoshz). (36)

r=0

GEkﬂn-J-z(z: _'Q) ’x \" .
= (_ l)n-+1 Gekan+2(12'7"“i‘|’z7 Q) P\ \ ’\ (37)
= (-_1):“1.3*‘2;2%(;;3) cothz > (2?%,2'}3531;2% a(2ksinhz) (38)

r=0 : .

= D ke S (S Ty D BEOKy o2k oosh )
T & (39)
27, — @) \z\em 1oz, —4q) 2 Geky, 5(2, —4)- (40)

The functiongs mvoh‘mg the ¥ -Bessel function are complex, but those
Involving the K- Bé%:-?el function are real, if z is real.

{fﬁi} Fir olutmn of 4"+ (a+2qcos2z)y = 0,4 > 0. This may
be/d rlvetva writing —iz for z in the first solution of

Gey,

Yoni2

~\\ ) y"— (a-1-2q cosh 22)y == 0

glm}ln §8.30, or by putting (4m--2) for z in the first solution of

¥'-(a—-2¢ cos 22); 2}y = 0 given in §8.20. Thus we find that
ce".n(z: "_g) = (‘—1)” 082’l{3n—z (I) = (—]),l Cezn(—'325 g) (a'2n) (1)
= (— 1) e q) Z (— 1y A@D T, (2ksinz) (2)

(‘3}1)

= (- )“"ef;lﬁ)m Z (— 1y AGV L2k cos2). (3)
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ey ia{Z —¢)

= {—1)"sey, q{dm—2,9)  (Dzni1) : (4)
= (— I)HSGEE%S:’]’)Q) cotz i {17 (2r++1)BE VS, 4 (2ksinz)  (5)
— (O S 1y B (hcoss) ®)
S€g,11(2, —4) o
= (1) ety 5.0) {0 R
= (- 1)?*+1"e;;4§§:“;)9 S (CArAg A ksing LD

\ W
X

= (12l tanzZ( 1)f<zr+1A;ﬁai’zzr_l(zkcosz) ©

8€3,,42(2, —q)

e (—-])"’ Sezu;.,(é?r—z q) bf}N +-‘1) \x \\" (10)
e (— l)nusﬁigﬁzi”m‘f cot 2 2( -~ szjrz W o2k sinz) (11)

2] U ' y L,
= (= l)jbszé%fzmg)mnz 2 { Er BB, 2k cosz). (12)

8 50 Cony ergence*bf solutions.

. Formulae as}%@:tom e m. To discuss convergence we require
formulac for the Yarious Bessel functions, valid when m, the order
of the functipufis very large and positive, and far excceds tho argu-
ment ], P Theu the first terms in the ordinary expansions of J,,(u),

I p{qdommatfe and we may write

) I fuy™ 1
\o v (u} o~ m(u’) ~ ?ﬁ(ﬁﬁ) . ( )
~Similarly we have
\ 4 . 9 AL 9)
}?’1( ) ™~ - m(ﬁ} i "'“_(m"_l) . ("‘
™ o

From (1), (2) we infor that under the above condition

1Y)} 2 (L)) and | K )] | (). (3)
29,

Series involving J and 1 Junctions, If 2r 3 |2kcoshz], (1) 1°
gives, with r extremely large,

Joo{ 2k cosh z) ~ (_T (k cosh ). (1)
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g.50]
When r is Jarge enough, by (4) §3.21
AR AR~ B (r TR (2}

Thus, taking the ratio of the moduli of the (r4 1)th and rth terms
in (15) § 8.10, we got _ :

[Age g o2k coshz)) |44 ooshzf

Ay S {2k cosh z) 16(r+1)*

if 7 is finitc but unrestricted. Hence the series is absolutely con-

vergent, By applying the ‘M’ test, it may be proved to converge/

uniformly in any closed region of the z-plane, or in any cloged

interval, 2 real. Tliese conclusions are applicable to all series il this
chapter which involve the J and 7 functions. A

3°, Series tnuolving Y and K functions. We considerf (1) §8.11,

—0 asr-4o, (3

Then {2} 1° gives N
Y, (%k coshz) ~ —(2r—1)}/m(k cosgg)ﬂr ' (1)
and, therefore, by aid of (2) 2°, O

Az:oTyip(2hcoshz) | 1#7) (Qf—i-;l’)??"\
i Ay Yol2kcoshz) | 4(r+41)% &3 |Coshz|*
a8 ¥ —+ 4-o0. If |coshz| =1, the serigégéz.i's absolutely convergent, and
the ‘M’ test shows that it is urLi’fErrrIlly convergent. As z-—>0 the
convergence becomes non-umiform. The series converges at the
f}rigin, but the rate of conyérgence is very slow. If [coshz| < 1,zis
maginary, |cosz, < 1,sand ‘the series diverges.

When the argumentyof the ¥ function is 2k sinhz, the third member
of (2) s 1/'sinh 212 ¢ }ience the series is absolutely and uniformly con-
vergent for |siph£/ > 1; for |sinhz| = I it converges non-uniformly,
but when lSﬁph\zT < 11it diverges. Thus (1)§8.11 represents Fey,.(z.9)
U fo andiihcluding the origin, whereas (2) §8.11 holds up to
Iﬂmh,;L—_—}l only, so z = log,(1+2!). Owing to the logarithmic term
in the expansions of the ¥ and K functions of integral order, the
additional restriction that,R(z) > 0 must be imposed when the argu-
ent is 2ksinh z. Despite non-uniformity of convergence, as shown
n§13.60, the function Fey,, (2, q) is continuous, but its derivative
3t 2 = 0 cannot be obtained from either (1}, (2) §8.11 by term-by-
tgrm differentiation. These conclusions apply to all series in this
thapter involving ¥ or K functions. |

— 1/lcoshz|* (2)

4861



IX
WAVE EQUATION IN ELLIPTICAL COORDINATES:
ORTHOGONALITY THEOREM
9.10. The two-dimensional wave equation. In two-dimensional
problems associated with sinusoidal wave motion, the displacement
{, or its equivalent, at any point {(r, y), must satisfy t-h({ wave

equation, namely, : \
32£ azC . a
e 2L B2 = (), 2 A\ 1
axz—{_ayz : lg '\\~ (1}

where Z, is & constant dependent upon the properties.'gf ‘the medium,
and the pulsatance of the disturbance therein. >In problems per-
taining to a rectangular boundary, e.g. a recﬁj}ngu]ar membhrane,
(1) i3 solved in the form given, subject to-the imrt-icu]ar houndary
conditions imposed. If the boundary is pi’rs\ﬂar or elliptical in shape,
it is expedient, prior $o solution, to ¢ransform {1) to either polar or
elliptical coordinates, as the case may be.

9.11. Elliptical coordinatesh ' We write a-|-iy == h cosh(¢--ir),
so that, equating real agd™ \imaginary parts, @ = fcosh £ cos 7,
¥ = hsinh &siny. Thus .

e 2 -sin? )
h2 cogh\sfg ti_k‘égj_ﬂﬂié —= cos?nH-sin’y = 1,
Ot 2

and \ E%ﬁ—mﬁ; = cosh¥ —ginh?% =1, {2)
Then (1)-\;‘13\prescnt-s a family of confocal ellipses with major axes
2h cos}igg“ minor axes 2ksinhé, the common foci heing the points
z SPh = 0. Also (2) represents a family of confocal hyperbolas

m‘\‘-’ibh' the same foei, as iHustrated in Fig. 164. The two families of

N\_fonics intersect orthogonally, and each interseetion gorresponds to 8
point defined by the coordinates # — A cosh £eosy, y = ksinhsmy.
The angle % varies from 0 to 27 in passing once round an eilipse,
while if we consider a stretched elastic membrane clamped between
two similar elliptical rhlgs, & varies from zero along the line of foci
to ¢, at the rings.

At the extremities of the major axis of any confocal ellipse {Fig.
164), 9 = 0,74 = 0,andx = 34 cosh¢ == La, At the ends of the
minor axis, 9 = m, $w, x — 0, and y = -Lhsinhé = +-b, If ¢ i
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the eccentricity of the ellipse, & = ae, xo coshé = &', and when
1, &0, while @ — k. Thus a long elliptival eylinder degenerates
to a ribbon of equal length, whose width is 2k, ie. ihe interfecal

(8)

X Bmoo A X X
O

&8 (c)
e 2&—@ ' / X%
.

Py 7 y v

f;gr d]'a. (8} f.)rthogon‘a,lly intersecting confoeal ellipses and hyperbolas for elliptical
mates, P has elliptical covrdinates £ = 2, g = 1m (60°), and cartesian coordi-
(5 1o nates x — hcosh 2cos 3w, y = Asinh 2sin .
egenerate forun of ellipse when e = 1. As e->1,a->h 8 >

() Degoncrat t-he interfoeal line of length 2h. . )
tenty £ £ ate form f’f ellipse, when eccentricity e = 0. The foel f.-_.oalesee at the
of a circle radius r, equal to the semi-major axis. The original hyperbala

through P (sec a) is now radii making ¢ = 37 with X'0X.

¢ and the ellipse —

211;Eance (see Kig. 16B). With a constant, if e-> 0, £ >, and the
Ipse tends to a circle of radius a. Since b =: @€, k0, the focl
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tend to coalesce at the orvigin, and kceosh & — hsinhé - a. 1t 4 be
constant, ag @ — 00, £ » o0, and e > 0, so that the confocal ellipses
tend to become concentric circles, Now (2) may be written
R N - ] 3
cos?y sin®y 3)
N '/,/Aﬁ k=0, yfx - Jtany, so y — ¢, cosn > cos ¢, the confoeal hyper-
~ “bolas ultimately become radii of the circle and make angles ¢ with
the X-axis, as in Fig. 16c. ~

Fia. 17. {a) Hyperbalic (ds,}, qlﬁ;}ii’c {deg) arc length, and radius veoior r.
(B} Area (ds, ds;) enclosed by tWO.GZQfltiguous pairg of orthogonally intersecting cor-
focal ellipses and hyperbolas.

9.12. Arc lengths-ds,, ds,, and radius vector r. Referring to
Fig. 17, the hyperholic'and elliptic arc lengths are, respectively,
SO dsy = [(0x]a)* -+ (oyjet )] At (1)

O T dsy = [(@wjen)+ By oq) ] dy. 2)

\'x...vx;c?f = hsinh £ cos x, 8y/of = hcosh Esiny,
Q) éx{onm = —hcosh £sin 1, &yfoy = hsinh € cos 3,
wﬁb")ea,ch bracketed member in (1), (2) is
Y == hfcosh? siny+-sinh%¢ cos®n]t = h(cosh2¢—cosly)t (3)

and

No

= g(msh 2¢—cos29). ()

Hence from (1)~(3) we obtain
~ ds;=1Ldl and ds, = I dy. (5)
Since ds, is along the direction of the normal to the ellipse, we may

write
dn = I, d¢. _ (6)
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The distance of any point (&, y) from the origin, expressed in elliptical
ecoordinates, is
y = (z2Hyt = hlcosh2é cos?n-f-sinh2sin®n]t = h(cosh® —sin®y)*
(7)

h cosh 24 cos 29}t (8)

a2t (

When ¢ is large erough, cosh £ ~ sinh{ ~ 3ef, so by (3}, (7) with

kb constans, [, ~ keosh & ~ hsinh§ ~ r the radius vector. Hence ,
we may write

dsy ~ rdf ~dr;  dsy~rdy,  dsds;~ rdrdy. & Q)

920, Transfermation of (1) § 9.10 to elliptical coo\r«di.ﬁ’ates.

Wite 7 = a-tiy - hoosh(é-+iv), 7 = z—iy = hoosh(fZstn), then

22 = 2?4/, and )
48823 b &*
bl A B TR P N : 1
&3 (axz+ ayﬂ) B N W
Putting { = §4-i9, { = £—in, weget z :b,c(%h {, 2= heoshZ, and
{{=¢+4n2 Thus R \J
2 1 : T ®

&  hsnh{ 83 hsinh@ 8ol \e& oy
BO AN
8 1 2 2 ~N1 2 d 4% 8”_|_32
= —r—— - . w—ﬁ,}— P a TwnE T e ooa’
& hsinhZ [’ 3\ Tsinhl 6l aral a2 o
Hence Ei f':f?_z'.:,’.;_ ﬁ P A —82—, (2)
azag\:f.‘axﬂ Ay h2sinh {sinh { 878l
8\ g2 2 & a*)
or KO D — P P} B (3)
g&‘z—'_ & h*(cosh 26 —cos 29) (3§2+ on®
Applying-(8} to (1) §9.10 leads to the equation
lu\‘; v 2 2 2
N\ fﬂ_{ %.1_2]62(@0311 26— cos Yn)l = 0, (4)

o2 " on?
with 9% — & h. Then (4) is the two-dimensional wave equ_ation (1)
$9.10 expressed in elliptical coordinates. \
9.21. Solution of (4) § 9.20. Let the desired form of solution be
{iE g = #{€)$(n), where » is a function of £ alone, and ¢ a function
9f 7 alone, Then we obtain

¢§Zi;+ ¢;§:_‘§+ 2k2(cosh 2¢ —cos Inid = 0. (1
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Dividing throughout by ¢ and rearranging teads to

Ld% 1 d2 o e

ZZ T 9kteash vg — -~ 2L 32k eos 2y, )

g T T g B e S @
Since the Lh.s. is independent of #, and the r.has. of £ each side
must be a constant, say a. Accordingly we obtain the two ordinary
equations

(—E—zé—}—(am%ﬁ cos2y)p = 0 (3)
dn? ’
v N\
and @ 2k? cosh 2¢ 0, A {4
P —(@—2k%cosh 28 = O\ 1

where a is the separation constant.f Then (3}, (4} twp"tIle canonical
forms with which we have dealt hitherto, and t}ié"ﬁ-bovc analysis
illustrates the genesis of the equations which bidr Mathicu’s name.
If in (3) we write +iffor 4, it is transformed into (4), while the
latter is transformed info (3) if 4-in be wrivten for £.

9.30. Integral order solutions o'f}l) § 9.21. A solution com-
Prises the product of any two Jfurlctions which are solutions of
(3}, (4) §9.21, respectively, for ’tke same vatues of « and g. Since 4

may have any value, the, m}mber of solutions is unlimited. In
practical applications the a;ppmpnate solutions are usually given by
ordinary and modified \Mathleu funetions of integral order, i.e. solu-
tions of (3), (4) §\Q‘l correspomlmg to @ == a,,, b,. The solutions

TABLEADS Solutions of (1) §9.21 when a has values for
) \ “Wathieu functions of integral order. ¢ > 0

(= @Qmm | £ bl )

I wp; iy fm- a= = by, }"raper_ty___

L,o({f, g)ce",(q, q) | Period = or 2 in oy, m | Se, (£, ¢)s m(n, q}
~\. even or odd
\ 3 ¢ Period #i or 2ui in €, m
' aven or odd
Fe (£ qioe,(n, g} ; Period = or 2w in 9, m | Ge, (£, glsa, (1. 9)
even or odd
_ ; Non-periodic in ¢
Ceplé, D)fepin g} | Non- periodic in 5 Be (& gigen(n, 9
i Period i or 2ni in & m
i even or edd
Fey (£, ¢)fe,(7, ¢} | Non-pericdic in n, ¢ Coplt, Pgepin 9) |
m-=1,1,2,. m=1,2 8. |

As in column 2.

T This nst nat be confused with the semi-major uxis of the cflipse.
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8(n) = el @) OF 0,,(n, ¢} With @, ¢ real are important by virtue
of their perfodicity in =, 2w, and single-valuedness. Various product
pairs, including second solutions of (3), (4) §9.21, i.e. ordinary and
modified Mathieuw functions of the second kind, are set out in
Table 10.

When ¢ < 0, the solutions in Table 10 are valid provided the
definitions of the various functions in Chapters 11, VII are used.

Alternative solutions. As shown in Chapter VIII, thero are alter-
native second solutions of equation (4) §9.21. These are set out in

Tahle 11. (See Chapter XIII also.) O\
NS ©
TaBrE 11. Alternative second solutions of (1) §9.21 '~
Abiernative Il Defined ‘ Alternative \ De}‘ined
) _Sof-uf.i??n ' aolution al Bolwution i 803113?;011@.,\\.: ) at
Feu(€.d) | Feynlé ) © §§8.11, 812 Fep(d. —q) | Fey,(50f) | §830
Fel(ég) 1 §8.14 Folip(ey —¢) iy
Gam(‘g’ 'ﬂ G-GYm{E! 9) § 8.13 Gem(‘fs _Q) Gé}[ﬁ(f, —5’} a3
Gekm(‘f! g} §8.14 ],'{’mkm(é’ —q) { ”

9.31. Solutions of (1) § 9.21 of realfractional order. When
{e,g} lies on an is0-8 curve in Fig. 1the order of the solution is
r=m+8, 0 < -2 1, and the solutions of (3), (4) §9.21 coexist for
* = a,,s. Then the solutions of{1) §9.21 are as shown in Table 12,
Definitions of the various fllI}Q“t-i})nS are given in §§4.71, 4.76.

L4 &l . \ - Y
LaBir 12, Solutions af}‘l) §9.21 when a = a,,,g for Mathieu
B Junctions of real fraetional order v == m~+B, and g is positive

E=dfligim | 0
for & =a, O Property of solutions

C-- T —— A - - . S— : —

.'5"{{5’ 9ce,(7, ) J(IE B i3 & rational fraction pfs in its lowest terms, 0 < p/s < 1, all

Co (%’ glee,(n, giN 7 sulutions in g have period 2sm, and in £ have period Zswi, 1f 8
AL 20, (1g)Y | s irrational, all splutions ace non-periedic in 7, £

?_L‘u{ £ bty

d Wl?e.n ¢ is negative Table 12 iz applicable provided appropriate
efinitions of the functions are used, e.g. in §4.71. We omit eon-

iifier&tiofl of solutions when (a,q) lies in an unstable region of
igs. 8,11, .

9'40: Orthogonality theorem [135]. Let g, be such that for
;%.a Positive integer and £ = Eq, n(Eps ) = 0,1 where i, is & solu-
'O of (4) §9.21. Then if a, ¢ are real, the point (@, ) lics ON

T @y, is & parametric zero of i, : see §§ 1240, 12.41.
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the characteristic curve for the function ¢,(v.¢), the latter being an
integral-order solution of (3) §9.21. For instance, the curve g4, in
Fig. 8 corresponds to cey(n,q) and alse to Cey(£,q). It follows that
we may write

d*,,

d??g—E_( ThFhL zg‘n M 00827})¢R = 0 (1}
4 B
and dggn { ECR ) ?‘gn m cosh Zf Sbn, =z 0, (2)
Put {, . = i, ¢,. then for (e e G ) W€ haVE Q
L ozz,.,,,m 2 h 2¢—cos 2 (> 3)
af?‘ + gn m(COS 1 § cos W)‘Zn mn "_\ ( M
Also .for (@prs Gpr) _ ' ‘ ""
~N\
o2 ¢
a§2’+ gf“+fzg;:,,(m:mh 26— RN = 0. (4)

\/

()

Muitiplying (3) by {,,, {4) by Eﬁ m aﬂﬂ subtracting the second from
the first we obtain

et e

+2“(gﬂ m'_Qp,r}(cDSh 2f—COS 2’?)§n,m gp P 0. (5}

Integrating (5) “@ respect to £ from 0 to &, and to % from 0 to
2w, we get A\

27

J [’C\{’\%— gmagg,] dy + of [Cp,r?%ﬁﬂ‘—cm ‘rig;]:ﬁ dé +
"\;' 2~ Tpr) T -T(cosh 26 —ecos 27?);”_,?“ Ly, dédn = 0. (6)

G 0

If £, . = Ce, ,ce ©m OF 8,788 > (o = Cep, 08, or Se,,5¢5n
the first integrand in (6) vanishes at ¢ = 0, §o, while the second

vanishes by virtue of its periodicity in ». Hence it fo]lovns that the
last integral is zero if p =£ u, ie.

&y o

f I {cosh 26 —cos 29)L, . L, dédn = 0. (7)
(L .
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This holds also if p = »n, ¥ 3 m. If p = n and r == m, the double
integral does not vanish. Then we have
&tn 2m :
Cel, sul€)eel m(n) ;

- i R (cosh 26 —co0s 29) dédy # 0, 8
J | seiiemettn R *

It may be remarked that if ¢, = ce, ,, or se,,, these functions
do not satisfy the usual orthogonal relations (§ 2.19) since ce,, ,,, ce,.

have different ¢ values, as also have se, ,, se,,, n %= p, m = 7. O\
‘The 5 integrals in (8) may be evaluated by aid of the io]ltmm\g
formulae: N\
b g ; \J
1
;.[ oeg.(n)eos 2 dn = AFWAFY - Z AGPAGR, = @gm R
by re
27 "
! cel 9 dn — L[ Alen+1)]2 S A(sn Wzmn @
=1 anr1{7)e0s 2 dy = JAf P+ 2 2r+ 2r+3 g+
’ (10}
o R
[ ya(aloos 2n dy = —§[ B RS g B B = Tonn,
()
,[w“” Joos Ay dy = é \(2\?‘?}&4-2)8(21’?,?2) =9, o (12)

Those parts of the ¢ mﬁegials involving cosh 2¢ may be expressed in
terms of dernrltl\(&, b‘f aid of (7) § 14.21.

551"



X
INTEGRAL EQUATIONS AND RELATIONS
10.10. Definition. The equation

]
y(e) = A | x(w, 2)y(w) du, ()

in which x{u,z) is a known function of the variables %, ¢«{and A a
particular eonstant, is called a homogenecus Linear mte(mw aquation
for the unknown function y(u). x{u,2) is termed 131;0 ‘nucleus or
kernel, and it is symmetrical if y(u,z) = x(z,u),\ ~e g e = g,
The equation has a continuous solution only for a discrete set of
values of A. These are called the character lstw\values of the nucleus.
The nuclei with which we shall deal hereithare continuous and sym-
metrical in u, z, except in § 10.30 et seqp,

THEOREM. Let "\ ‘

d{u), &' (u), $"(u) be contlsnutms with period » or 2r, such that
¢ +(a 2k cos Qu)h = 0; ,'}"m

2% x{U,2), X Xiio DE cor;t:inuous in %, 2z, such that

{a) {ﬁf’)ﬁb\ P X]u = =0,
$J

(&) i’\i?__ %zzg — 2%*(cos Bu—cos 2z)y = 0,1

_ Su?

then ,\N\ ’ y(z) = A J‘ x(u, 2)p(u) 4 {n

satls’ﬁﬁ Mathieu’s equation.
:\'P?'oof. By (1)

’”\\ 2m T
> A
\ j—g%— (a—2k? cos 22)y — J [ — (2R cos 22)X]¢ du +Aa J. x$ du

= Af ¢»du —|—Af(a 2k2 cos 2wy du (3)

T This is the wave equation - EJ_ +3 x-[_zu(mgh 2u—cos2zly = expressed in
the meodifiad elliptical LDDlllln}ltl_’.\ﬂ r o= h vosweosz, y = iheinusinz, i.o. is written
for wu.
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by 2°(b). Now

am 2 27
By ‘ 4 127 s
[ #5Kde == [ $ad) = oy — [ 4 ax )
] 0 v
2
=[xl [ ¢ du. (5)
’ 1]
By hypothesis [ | vanishes, so
o 2«6% _ \
. OF M L W R7N
‘}. Sba‘ua du f Jur ¥ £\ 6)
0 @ W™~
Substituting from (6) into the r.h.s. of (3) leads to ‘ b
. o 'M’\\.
% DL ey Dy d°p 2 RO,
EE-;—(&— 2Peonziy = A f t&?—}—(a—%.c\o? Quid | x du
1 ‘x;.\
— 0, by hypophiesis. (7

Heneo y(2) satisties Mathieu’s equation s\ -
If x{u,2) is periodic in %, z, with .p'ei’ic}d m, 2w, y(u) has the same
period as $(u), so d(u) == A,y(u).~Accordingly we have the homo-
geneous linear integral equation™of the first kind for the periodic
functions ce,,(z, ¢), se, (2, g). fidmel
m( 9); m( a{\n.' y’

N\ 2n .
ooy= 2o | x(w2)y(u) du. ®
o } / A

H(dy 4 o7 eni pps o - |

[$x— b x| £)0, the upper limit in (8) may be .

The theorstivis valid for (e, (z,q), Se,(z, q) if for z we write ¢z in
(1), so t-!lk{frj} satisfies " — (e — 202 cosh 2z)y == 0.

~\/ .
10\11‘ The eight primary nuclei for ce,(z 9), se,(z q). We
ommence with the wave equation '
X1 0x M
CX L OX pey = 0,
] x2+ 3y2+ 1 X
Vhere kb = 2k, By substitution we confirm that simple solutions
el y = ez ethiy | yeikaz gnd xettsv. The real and imaginary parts

f)ft-}]ege flllletions are Sepal‘atc SO]utiOIlFi, S0 WC Oljt.a.il] the eight given
It Tghle 13
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TarLE 13

Solutions of (1}

cos k@ cos k¥
ain ke, x zensk v
sk, ¥ yeos k@
ysink, x xsinkyy

In modified elliptical coordinates, x = hcosucosz, y = thsinusine,

and by §9.20, (1) may be transformed to ~
2 2 a
2—;5——22—)2{— 2k2(cos 2u—oo0s 22)x = 0, R V) (2)

which is () 2° §10.10. Substituting for x,  from gyli’g\;e in Table 13
and omitting the multiplier ¢, we obtain eight, prithary solutions of
(2). These are the eight primary nuclei x{u, z},"‘g}ld they may be used
in (8} §10.10 with the upper limit «. ThQX‘aI‘E} set out. in Table 14.
. N
TaBLE 14, The eight primary nucleizfor ce,(z,q), se,,(z,q), g > 0

xlu, 2} = nucleus of (8) § 10.10%and « solution of (2) i)
1 | coa{2kcosucosz) I Aﬂn @ i‘{ ‘ caah 2k sin 4 sin ) i 3" Ceaql2, )
2 | win{2k cosw cosz) Ao 2  cos u cos L X Adar1 i Uy i1z )
o i x cosh(2ksin » sin z) |
3 ¢ sink({2k sin v sin z) oy | 3 i sin w sinz D pgerr | Sezeeg(z4)
x cos(2kcosucosz) -
4 | ginusinzx 4* leosucosz X T WP )]

'i':tF‘sn:—
xsin(2kcosuc§@\’ ? © % sinh{2% sinusinz)i
Each nuglﬁlﬁié“in Table 14 is symmetrical and periodic in #, 2.
(1), (4) hage period =, while (2), (3) have period 2m. The functions
y(z) al‘e\:a“.hocat-ed to their respective nuclei by considering periodicity,
evenhess, and oddness. Since ce,(z,q), se,(zg) satisfy a homo-

) geheous linear integral equation with a symmetriecal nucleus, it fol-
\\‘iﬁws that they are orthogonal [213] (see also §2.19).

We have now to derive the characteristic values A, g, ©cOTre-

sponding to various nuclei. This may be effected by aid of Bessel
series for the Mathieu functions, as shown hereafter.

10.12. Bessel function expansions. Inserting nucleus 1 Table
. 14,810.11 and ce,, (1, q) in {8) § 10.10, with limits 0, 7, we gev
cey,(z,q) = Ay, I cos(2k cos u cosz)ce,, (u) du  (g,)- (1)
0
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Substituting the expansions of the circular 202, p. 43] and Mathieu

functions, (1) becomes
Con,{ @) = Moy, | [Jo(2hcOS2) 42 3, (—- 1y (2k eos 2)cos 2ru] X
b r=1 :

% S AP cos 2su du.  (2)
4=0

Consider any » in the first T. By virtue of orthogonality of the

circalar fanctions, all inteprals vanish save when r = s. Thus we get.
K N
(=172, Jo, (2% con 2} AW J cos®2re du ¢\
AN
6

— (= Ve rAZ Pk g8 (3)

Henee the expansion of the Mathien function in B.F. {3

'S

0ey,(2, ) = Ay ™ z ’A(E")Jsr{za{io‘sz) (£

By 20 §8.50, the v.h.s. of (4) is absolutely a.mkm}lformly convergent
in any elosed tectangle of the z-plane, 4?real > 0. Since the r.hs.
represents ce,,(z, ¢}, it and also (1) is %,S?llltlon of

y'+(a--2¢ cos‘i?z’)g} =0,
9>0,8 =a,, Thisremark apph(*_s as well to the integral equations
and their expansions for ceznﬂ(z q), se,(z,q), with ¢ > 0, & = tay 4y,

b respectively, given in l{tﬁl‘ sections.,
Determination of Mg (4) put z = 4w, then cosz = 0, and all

the J vanish (,xce_pb J,.;(E}) == 1, Theérefore
L’bgn(gﬂ q ;ﬂAmn) ..... 2 ( )rAﬂﬂ)/ﬂ.A&n) {5)

S0 Ay, is 8 flmélon of g. Using the tabular values of the A, we have
for = 2 q — 8

2}4,

‘@{‘fdgw, 8) o 3 (— LY AW — 0-24703 39--0-59450 88+
r=0

< 40-63041 57033453 00--0-06089 34-+0-00807 17+
+0-00039 0540-00001 77-40-00000 06
= 0-69384 47.T (6)
Hence by (3), (6) we get,
Ay = 0-60384 47/ x 0-24703 39 = 0-89275.. (D)
When g — g,

T This may be obtained from [43] to five docimal places.

\
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10.13. Exponential nucleus. We shall now demonstrate that
cezn(z, Q'} = )‘2#5 I eﬂikcasumﬂz ce2ﬁ(u) du (aﬂn)' (1)
: .
To do so0, we merely need to prove that its imaginary part vanishes,
since by {1) § 10.12 its real part represents cey, (2. q). Then

~ Imag. part == Ay, f Z (—l)szmﬂ(Qk cos z)eos(2m -1} ce,, (1) du,
U] ,
| ¢
and this vanishes by virtue of the orthogonality of kﬁ?s circular
functions. In the same way it may be shown that intégral equations
in the sections below can have exponential nuc]ai’ \Either the real
or the imaginary part of the integral va,nishes,\as the case may be.
10.14. Bessel series for ce,, (2, q). Using this function and
nucleus 2, Table 14, §10.11 in (8} § 10, IO\hTepetltmn of the analysis
in §10.12 yields ~\

)
NS

ey, 44(2, ‘1) = Agpa1 @ 2 fAQnﬂ}erﬂ(gk c082) {(tg,41)- (1)

By 20 §8.50 this series ig @bsolutely and uniformly conwvergent in
any closed rectangle of the z-plane, k2 real > 0, as also is its first
derivative. Conseqpyes{t]y term-by-term differentiation is permis-
sible, so &V
ey a(2, ) = =5 Agp 41 2rksinz X
F 4 N \ 4 .
O X 3 (SIPAGIA T, 2k e0s2)/d(2heosz)]. ()
:"\s. . =
NowaFolu) = 3], 5(0) —dpen ()], and sinee J (0} = 0 if p# &
when'z = s, the only non-zero term is }Jy(0) = 1. Thus
PR
~\J 06 (br. q) = —mEARON, (3)
Nso _
Agay = —C0g, {4, gk AP0 — Z {—1y {2 -[—I}A(z"“ n ’ﬂ}&A(z“”)
(4)
10.15. Additional expansions. Using nuclei 1', 3 from Table 14
§10.11 and proceeding as in §§10.12, 10.14, we find that

0oy, (2, q)—ﬁmz (— 1y ARRL (2ksinz)  {(2g), (1)
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(ony _ ©82a(0,) e
with Ag,, = w4(2ﬂ32A = "14(2“, ; (2}
ey 1% 9) 7= Hana @ Z (—l)’B(Eﬁ?)Iz,,H(% 8in z} (3)
3 [y Se’ T (0! {?)
With  pgaig = BPMUZ(’:H)BS?H” = i W
10.16. Determination of py, 0. Azuns Pan it tanae 1E we seloeb(N
fgnspy the integral equation, using nucleus 4, Table 14, is AN
xS
™ '\
8834495 @) = Monsz [ sin wsin z sin( 24 cos # cos 2) X N
0 \

K BCayy 2(“: (I) d{':,"'\ gtbﬂn+2) { 1)

™ o v
== Qg o J sinusinz Z (—1)’J2r+1(215\c@s zjeos(2r-- 1w
0 r=0

\

2 231;2)3111 (2s+2)udu  (2)

8= l] N/
i | sinz ﬁ S 1 JIJ;;i;_;-(ﬁk cosz)oos(2r+ 1w
b
X 2 Bf&‘ "”[(,os{‘)a 4 Du--cos(2s +3)ufdu  (3)
ST y
== Pante %msmz}(

2 ‘g ?" 1y BE LIy, 41 (2k cO8 2) rra(2kcosz)]. (4)

Now (J—l_ 2)&2(’1&) A1 () Ty as(w)], SO (4) takes the form

N
Canlerd) = pzm”t&“"Z( (-4 2) By 2k c0s2). (9

This series and its first derivative is absolutely and uniformly con-
Veégt,nt for all finite values of z, 42 real = 0. Thus term-by-term
erentiation with respect to z is valid and we get

!
9 a2, ) =

= Haniagg %[2 (— 1)7(2r- 2) BEY 5{sec? Jyy (2 0082) —

—k tanzsin 2[Jy, (24 cos 2) —- gy a{ 2k 008 z)}}] . (8)
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As z—>§n all terms vanish except sec®zJy(2kcosz)—> L2 and
—ktanzsinzJ(2kcosz) > —4&% Hence

* 1r 0y -
s€5,40(37.q) = “—P2n+25‘k‘8{2"n ", {7}
s Honsy = —28€y, o{m, g)/mk B2 (8)
9 =
= sy D (— 17+ 2) BEIEY. )
Bt =0
For the remaining nuclei in Table 14 §10.11, we obtaigl >
. weobz L\
Cey,.1(2,9) = Ay iy T X . N N

\/

s \
X T A=y @r+ DAPYE, (2k&inY)  (2g,4), (19)
=0 )

. &c'\.
with A - g?ein_.'_l_(oﬂ) . ENRNY, @1 11)
e T Ve _A;‘z\:i;}-lj 2r -1 - {
. 1 Ay =1
,  whanz €
Se‘zn-i-l(z: g) = PgnTl"W ~,\

X 3 (IR BEIL, ((2kcosz) (by, ), (12)

. , Ise,. _{fl"?},' 2 < N
with Honig = - ﬂ%};ﬂ 31__}_9)_ = - z (— 1)y BRriD, (13)
N\ 1 =0

O
(NJrreotz
Se2n+2(z= g) = }@4-2 Tk'* o

\ ‘\ X 7-20(_ U(2r+2) BERED L, o2k sinz)  (boyp), (19)
\V ; o
SN\ 28e,,.200,9) 2 ) " -
Wt = e = B > (r+2)Bgiy. (19)

N e =
{By 29§ 8.50 all series in § 10.13 and the present section are absolutely

\ W

" and uniformly convergent in any closed reetangle of the z-plane,
k* = ¢ real = 0,

The characteristic values in Table 15 are expressed in terms of the
coefficients in the series for the corresponding Mathien functions.
By §3.21 the sigma terms are absolutely convergent in 0 < ¢ < ¢o-
By §3.25 the 4, B are continuous functions of ¢, and by §3.30 Ag,
Ariznn}, Btlzn.m, Bf22n+2) have no zeros in q > 0-, bu$ tend to zero
monotonically as g-» +ao, Ay, A) 1/ and X, ) — /= as g > 0,
and are continuous in 6 < ¢ < ¢,. For n > 0, Ag> Agns Agntrs Hansts
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TapLe 16. Characteristic values for the nuclei in Table 14

ce'zn{%"r q} o ce2ik{0! g)
= o ad Agp = T 89,(7, 4)
0 ) %)
(- 1yrag | > A5
=0 . _ r=0
- WAEM] ,H,Ai?n}
(eg NEL A . q‘eznp. (1, Q) i
Mgy ™ ﬂ;c-:ii.'n ¥ Agai1 = - ",i?izﬂ) g 122 ¢)
o ol
(—yizr 1 nagay” 23 Agy
r=0 r=0
) nkAPer T mglern P ’\:\'
7NN ¢
bﬂgnnm ) P Zrey, 1{dw, 4} se = N\l
= = i 4
Pam 41 PEBE L Hanil 2 BPR D 2”‘:&&
iv) ¢ '..
%ﬂ%ﬂmfn 23 (B K
= T RBEeT = —f;}'—;,m"— ;
_ 2800,y %7'» q) : ’ 2 5eg, 1000, 4)
B2 = — WLB‘ e b2y Hontz = ﬂ]»B';""'K W i BPan '3(2’ 1)
2 2 {—1){2r 3 2)B80 LY z 2 (2:--|-2)Bf*”tﬂ’
_ R =1 —
o= '.ITA'B‘E_J“*J&} _»:‘,‘ kB{‘.!n+‘3]
an
dfor n 2 0, Ay, .1, Hon+1r Fontg :‘-‘21142 are continuous, 0 < ¢ < o

The dlbLOIltlnu‘{t v in each of the\ﬁrst set at g = 0is due to vanishing
of the coefficient in the der mina,tor "That in each of the second set
arises from the factor L™= g%, and for n > 0 to vanishing of the
coelicient in the denomlnator The form of the latter may be derived
from the general re'sult (9) § 3.33. Thus as g — 0, we obtain

A(zn) ~ !{;Kl\)gn 1(2?’&) B{Zn 2} (?1—[— 1)an22“(2:1,+ 1)? (16)
."\j:. AResD 0 BERAD pv gn/22(2m)! {17)

.\ ¥4
The réciprocal of each coefficient has an infinity of order n at ¢ = 0.

TABLE 16. [llustrating behaviour of characteristic values as

g—~>0
Characteristic E Behaviour as | Characteristic | Behavieur a8
. value | q —= 0 walue | q— 0

_ | e
Ao | .0 X **””33
Aﬁnﬂ ] e '::n:—l | =% niﬂ
Hay vy | — o P*.:n'rl %, n
Howyn | Hag-2 _:i______

4581
Bb
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10.17. Theorem on integral relations. If y(#)} is a Mathien

funetion of period = or 2n; y{u,z) the corresponding nuciens for the
U

integral equation; £,(u,2) = x(u,2), so that &{u,z) = J xie, ) du and
[y(u)é(u,z)[, -7 == 0, then ‘

ylz) = —A![J-x(u, z) du]y’(u) du. (1)
i
Proof. Substituting for y into (8} §10.10, we get ~

y(2)A = J. E{u, 2)y(u) du = j y(u) d[(u, 2)],, O\ (2)
0 ¢ NS ©

U

[ §(u z)]u, e ff(us z)yl(“l(&l;‘s (3)
\
80 yiz) = —/\f [fx U,z duk; {u) du, {4)

since the first member on the r.h.s. of ‘39 vanishes, by hypothesis.
10.18. Example. To illustrate, fhe apphcatwn of (4] § 10.17, we
take nuclens 4 in Table 14 § 10 11 ‘namely,
xiu, z) = S{n.%;alnzsm(‘lk COS & COB 2)
with y(u) = sy, 4(u, Q) l‘hen
’ (C ’ t;an., -
Elu,z) == | x{u, z)\(}s = n(2k cosu cos z) d(2k cos u cosz)
(1)

= %4003{2.{ COR # COS Z). (2)
But [y(@f(u z == (), 80
cotme.,nq(z g)
© A —rc (2k ) yd ®)
— 3 os{2k cos u cos z)se,,, , o(u) du
0
A o & 1 (9 9 ‘})-u]“<
= .{g J [}U 'erD(_l)r-,— '}-21"1"2(""'kcos Z)COS(—'T—T"- :
1]
% 3 (2542 BEnD cos(2s+2udu ()
=0
= g Z (— 17 (2r-L 2) BEAD, L o(2k cos 2). (5)
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Comparison with (5) §10.16 shows that A = p,, ., so from (3) and
1}§10.16 we get

" .
ok jsin % 008 2 8in( 2k cos u cos 2)sey, (U, q) du

= —J-cos(z}'x: COS U COS 2)8€y, o(%. ) du. (6)

The integral relations given below may be derived by analysis akin
to that above.

ki

tanzce,, 1(2, ¢} = _ii”k“ f sinh(2k sin u sin zjce;, 41 (4, ¢) du, , (W
* s oM
™ N
cot2sey, 4(2,9) = “2’}” J sin{2k cos 1 cos z)se;nﬂ(u,qqa,u. (8)
. 0 v }
i 31' b,
tanzse,, .q{2. ¢} = _PE)”LTZ l cosh{2ksin « si<n§e;n+2(u, g) du. (9}
ok | A
0 \%

10.19. Formulae for ce,(z, --q), se, & « -g). These functions are
solutions of the equation ¥+ (a-+ ZQOQpQS{Zz)y —: 0, Thus the required
formulae may be derived from thofevin preceding sections by aid of
§2.18. The values of ¢ and k refhain as before, i.e. ¢ > 0.

10.20, Integrai relationis) for Ce,(z,q), Se,(z ¢). These are
derived by applying thexrelationships in (2)-(5) §2.30 to the integral
equations for ce,(z, q) e?;;(z, q) in §10.12 et seq. Thus :

CeEn(z Q) "’{,'\
ce. [y )
= ié%zf%f cos(2k cos « cosh 2)cey, (u, q) di (1
LAY
el q) |
:'&i;?zriiq'] cos(2k sin wsinh 2)ee,, (u, ¢) du; (2)
0 uf

0

CEEH-&-}_(z Q’)

wlA(2ﬂﬂ 1}
0

_ _ctey, v
= 2 *1(27T Q)J sin{2k vos w cosh z]cegnu(u,g) du 3)

4)

e

C9n+1(0

24100, : . .

mfikter }f 608 % cosh z cos(2k sin % sinh 2)cey, 41 (¥, q) du; (
4]
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Se2n+l(z: Q)
1
= % f sin TJLSinhZ COS(Z}'{; cos i cosh 3)5321&_‘_1(%: g) du (5)
G .
r 0 ) m
ges (0, o
= #?G’}‘;?ﬂ_% f sin(2k sin wsinh z)se,, (%, ) du; (6)
L1}
Sen+a(2,9) -
Dges . 1 . . _ O
=~ 2n+(22{52:%ﬂ sin # sinh z sin(2k cos u cosh z)sey L, ¢) du
T o !
_ 2sey, (0 . R
= fg{:ﬁ 2?) cos # cosh zsin(2k sinu smh ﬁ)s,emwg(u, grdu. (8)
[H]

The evaluations of {1)-(8) are given at (15),) (17) §8.10; (1), (2) §8.12;
(8), (7), (10), (1) §8.13, rebpectwcly\slirom §I{) 18 and Table 15
§10.16 additional relations in which’ ce;,.), sey,.,, se;,.0 appear
under the integral sign may be, wri’bten down. All the above repre-
sentations of the modified Mdthleu functions are first solutions of
(1) §2.30, provided « has 1ts,proper value.

10.21. Integral re@tions for Ce (2, —g}, Se,{z, —¢q). These may
be derived from {1 ,(8) §10,20 by applying the definitions (1), (11),
(21), (31), §8.30,

Cesalz. —Oh D™
(il}ﬁ?i%()gf, 2 f cosh(2k cos wsinh z)ee,, (u, ) dut (1)
o/ T
~ = (_1)—§?§5(0 .9) cosh(?k gin u cosh z)ce,, (4, ¢) du; (2
} .
< = )
Cegpiafz, —q)
_ = 2;?22‘:11){ 7. 9) f sin w cosh z cosh{2k cos wsinh 2)se, , 41 (#.4) du
9 (3)
= (TS (0, q_) sinh(2k sin u cosh z)sey,, 4 {¥, ¢) du; (4)

7k BEn D
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Sem-!—l(z: —q}

T

—1 n+lce"”+1 5T, . ; .
= )Trkzﬁgnﬂ‘fﬁ . f sinh(2k cos u sinh z)oey, ., (u, g) du (5)

0

cosusinh zcosh(2k sin u coshzjee,,, (i, ¢) dic;

(=D Zeeg, ,(0,9) f
0 (6)

e
ey, 12(2, —¢)
()20, umg) f
0

- ""_‘ﬂ'kazaﬁ;'-aT__ {
N (%)

™ k

(=1 2se5,,,(0, 9)
Ak B

[ cos u sinh 2 sinh({2k sin % cosh z)sezﬁééi;?, q) du.

b - o ®
The evaluations of (1)-(8) are given at (2), (3}, {13 (1'3), (22}, (23),
(32),{33)§8.30. All the representations of the m@’ghi'ed Mathieu func-
tions are first solutions of (1) §2.31, provided@tas its proper value.

10.30. Bessel-circular function n;;cié‘i. Hitherto our nuclei
have been limited ¢o circular and hypc{}}hﬁc functions. But the wave
¢tquation admits of a plurality of_saluitions, and other nuclei may,
therefore, be derived. Any solutioﬁ expressed in modified elliptical
coordinates, which satisfies qqni}itinns {a), (b}, 20§ 10.10, may be used
8 a nueleus for the integralN1} § 10.10.%

We commence by trahsforming

:‘}’}82;( Ay .
O P+ Priaa—o (1)
to GYliﬂdriU&L’}\lBI&r coordinates, where v = reosx, y = rsina. By
eswbﬁs}l?ﬂ Procedure we obtain

Q &y  lay 1 &y 2

4 — = P — ["‘2‘ =S n ("’)
N crd ' oroer +?‘2 fa® Fax .

“*I'it.ing x = UV («) and using analysis akin to that in §9.21 yields

the twg ordinary equations '

d2U 14U |, vf)” _ o (3)
d—-re‘*';?.a*("l—;z =0
and &V g - (4)
Pt ¥ ]

1 Provided thie integral converges.

N\
sinwcosh zginh(2k cosusinhz)se,, o(u. q)du,
2 A\
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v? being the separation constant. The formal solutions of (3}, (4) are,
respectively, J,(k, #), ¥, (k;r}); and cosva, sinve. Thus it J (&, 7)eosva,
Tk, r)sinva, Y,(kyr)eosva, Y (kyr)sinve are expressed in modified
elliptical coordinates, we get the sets of B.F. nuelei in Table 17.
Hach nuclens satisfies conditions (z), (), 2° §10.10 and the integral
(1) §10.10 converges if due regard is paid to the phase and modulus
of z.

TaBLE 17, Bessel-circular function nuclei: k® real = 0\

s

. jNquewx(r',a} = TV ()

m=0,1, 2,..) ol ylz) yliz) «Qemarh
i - ! : ¢ o= i;{t}'{cos 2% + 008 Ez)]i
1 Janlkyr) (g (2ma) g g S0 (g | Oyl x in L3 ane
: Bl Bon "far R Nthen pc,rmd ¢ and sym-
cos iee e o m{~\ moetriesl in w, 2 period
2 J-m k) o {2md D | {u,q) (2,90, 3 [z,q] 3" w. 2, Tespeetively.
o sin 5% +1 Stan 11 Sen - In {3}, (4) replace cos 2
: . ¥ by eosh 2z, Biz) = 0. x
3 Yynlkr) c:)s("’ma) “e {u,g) —_ ery\},.,q} in 3,4, are non-periodia,
I ey ; ag alse are Fay, Gy
| l N F {sec § 8.11}. The nueclei
4] Fompalin) 0 (2m b a0 gl — () G‘”ﬁ {(ng)| for gliz) sre skew-
; [Fean+1 JN T et © symmetrical in w, 5.
Formula for r. r = (2*+y¥dwith
x = hcogw cosz, y = ihsinwusing,
the modified e]]iptic.;d”{%ordinates. Thus
\ Ny o h[(cos 2u--cos 2z)]t : {8)
and, since kyf(Z="2k, '
N kyr == k[ 2{cos 2u+-cos 2z) J. (6)
{\Y . - . . .,
Y, hagia.singularity at the origin, and since k,r has zeros W hen
cos Zu = —-cos 22, {6) cannot be used as the argument of the ¥ func-

_tion if z is real. Writing ¢z for z, R(2) > 0, there are no zeros {u real),
sa ‘we obtain the argument for the J, ¥ funections used in the nuclei
for the modified Mathieu functions in column 5, Table 17, i.e.

ky,r = k[2{cos 2u-+cosh 2z)]t. (7

Formulae for cospa, sinpx. From above,
cos x = xjr = cos % 00s 2] 3{cos Zutcos 2z)]t (8}
and sina = y/r = isinwsin z/[3(cos 2u+cos 22) ]} (9)

Then by de Moivre's theorem

(cos pati8in pa) = {cosa-{-isina)?, (10)
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80 €08 poy, BIN Pox are obtained by equating real and imaginary parts
in (10}, and substituting from (8), (9). The remarks in column 6,
Pable 17, may now be confirmed.

10.31. Hankel-circular function nuclei: 4% real > 0. By (4)

8.14
§ Fek,,(z, ¢} = 3[i Ceqn(z,0)—Feya,(2,0)] (@), {1)
so by Table 17, § 10,30 we see that the nucleus for Feky,(z, ¢) is
iy, oy 7} — Yo kg 7)]cos 2mor == 3eH Gk, reos 2ma, {2)X
in which %, is given by (7) §10.30, with R(z) > 0. Other ﬁucleikajpe
set out in Table 18, . QO
TABLE 18. Hankel-cireular function nuclei: k? ?%3‘56

$lu) i)

Nucleus x(r, a} .
| in (1} § 16.10 iw{{ﬂ.{l) §10.10
PN

(me == 0, 1, 2,..)

1 4
i 2 ¥4

Cogm CO8 D e L& [Wek
1 | By r)' (o) iﬂ%(“’ q)s':\ Gek%( )
2 e T et e | e0 Ju, 4 | gf};m(z, 7

s | BCngdy

The Hankel function may be expfééagﬂ in terms of the K-Bessel
funetion by the relativnship (1) § 8.14.

10.32. Nuclei for k2 reat\< 0. Here we write —&f for k} in (3}
$10.30: (4) §10.30 is ungliunged. The formal solutions of (3} §10.30
are now the modified B.¥. 1,(k,r) and Kk, r}. Hence we have the
nuclei I, (k, rjoos vag™Elk, risinve, K,(k; rjcosv, and Kk rjsinva.
Y,,('f-kl r) is a,lsq..\’@“SCﬂUtiOn of {3) §10.30, s0 Y_,,(-i:‘ré'l }008 Vo and
Y,(ik, i ve 1{. 7w be used as alternative nuclei. The nuclei are set
out in Ta.blé: 19. - |

@) .
\\T:‘LBLE 19. Bessel-circular function nucles: k2 real < 0

- I ——
=

- udews i ! - |
h-l—__[ﬂ =9, 5L 2. dlu) ¥z} yiiz) : Remarks i

i I —_— o —
b bl ) 5% oo o Co o, _ Those in Table 17

) Il 1) (2ma) ooy {u,—g) !Ee2n{z.—q} Seqn {z—¢) sy here, mi-
2| Ly e %% 0, oo co Ce _ tatis thutondis.

w4l lr}sin (21 e seg,ﬂ_l(u’_m S22, 41 (o9 Boge +1 =) If ¥(ikyr) is used

Tip . Ca8 Fek in (3). {4), Fey,

[ Senllar) gy (2ma) ::2 (w,—9q) - Gekg,.(z!—q) Gey are obfained

£ ] .

4K o8 . i Fek for y{iz).

| -y ) co _ ¥ (z—)

o (2m D sen,.-.l{u’_qj .: Gekgn 3
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10.33. Integral equation for ce,,(z, ) with Bessel nucleus. In
1, Table 17 put m = 0, ¢{u} = ce,,(u,q), and insert x, ¢ in (8)
§10.10 with upper limit #. Then

ceou(2,2) = Fan | JolR[2(008 Zut-cos 22 Hjceg, (u, q) du. (1)
a
To determine ¢, let z = 0, then from (1)

ey, (0,9) = 9, jJn(Qk cos ) 20 AL cos 2ru du. N (2}
; P ¢

Now by (2) §10.34, with z = 0, L\
. i N\ ¢
J Jo(2k cos u)cos 2ru du
™ @ “"\'\.’
= [[70+2 3 (— 1T ik)oqsSamu]eos 2ru du 3)
i m=1 \,
= (—1ymJHR). R )
Hence from (2), (4) we obtain VY
(an, - cean ’f io: l)rAgza“)Jg(k} (5}

An alternative (,\pressron 101 @5, Ay be derived as follows: Insert
the value of Ay, fl{))\ 5) §10.12 into (4) §10.12 and intograte both
sides of the Iattq\uﬁh respect to z from 0 to 7. Then

"

J ? A‘*") vos 2r2 dz — e e
o 7 ~7 :
’\‘ CBA 177 q a o .
‘\ == :gtan} J Z —1)rA@, (2F cos z) dz (6)
AN w
~\/ . 1 0
V _ ?e_a;a_.(_jé“- 9’)_[-, (— I)q(zm;z(;f)] (7)
ALzul Z;

since f Jo(2k cosz) dz = wJi(k). Thus from (7} we get
0

2 — AR THE) = [AEDP/ce,, (L7, q). (8}

Substituting the rh.s. of (8) in the denominator of (5) leads to
Pan = teg, {0, g)cey, (An, q)ia[ AFn12, {9)
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10.34. Expansions of Mathieu functions in Bessel function
products. We apply the addition theorem

T (o424 20y vy 08 2ut] = 3 (1), o (01)(v)cos 2mu, (1)
m=9
where ¢, =1, ¢, = 2 for m 2> 1. Let v; = ke, v, = ke—%2, and (1)
gives
T 2(eos 2u-t 008 22)] = 3 (—1)me,, T ke~ (ke=Joos 2mus (2)
=1

Substituting from (2) inte (1) §10.33 we obtain

e 5.0 O
=03 > > (—1)mARe,, T, (e (o) [ cos 2rucos T du,
F=mee=G ] h (n}‘. (3)

term-by-term integration being permissible, since phé\sﬁe‘ries before
and after integration are absolutely and uniformly Ganivergent. Now
- 7 (m == 0),
J cos 2ru cos 2mu du = 0 (m;}r = 0), (4)
o Im A\ (7 =r > 0.
Hence (3) becomes N
Cun(z,9) = Ban 3 (<Y A e~ = ke, (®)
r—0
30 this series satisfies "+ (a~2k% cos 2z)y = 0, k? > 0. Whenz = 0,
(5) gives 2N
Do = G0y, (0,9) [7 > (— 1y AEMIHE), (6)
g Ny r=>0
asat (6)§10.33. N\
If in (5) we wrie™iz for 2, this being permissible by §13.60, then
S N -
Ge.) = gy 3 (—17AGOT e} 1), @)
PN ".’ r=0
80 ’E-h't;\;.ﬁ;s. satisfies 4" — (a— 2k2 cosh 22)y = 0, k¥* > 0.
Su{astituting (37 —=z) for z in (5} leads to
e (2, —q) = (—1)"9,, 7 f (— 1y A@P ke~ ) L{ke™), (8}
r=0 .
80 the r.h.s. satisfies y”--(a--2&2 cos 2z)y = 0, k2 > 0.
Putting iz for 2 in (8), or (4i+2) for z in (7), yields
Cogn(z, —g) = (—1\'pgym > (— WV AGILGke MR, ()
I .
% the rhs. satisfies y”— (at k2 cosh 22)y =0, & > 0. The multi-

plie,;(ﬁ 1)" is used in accordance with the definitions in §§2.18, 2.31.
ce



194 IKTEGRAL EQUATIONS AND RELATIONS {Chap. X

16.35. .Integral relation for Se.,.,(z ¢) with Bessel nucleuns.
In (2) Table 17, if we put m = 0, iz for z, take é(u) = se,, (1, q),
(8) §10.10 gives, with the aid of (4) §2.30,

Sey, (2, q) = %ﬂqJ. Jy (b 7)sin o 2 BEiUsin(Zs+ 1w du, (1)

where b r = k[2(cos 2u+-cosh 22) |} = k(e¥+e =42 cos Cuit. Now if
€ is a cylinder function, then [214, {4), p. 365]

G—-—-H:fr?) == QVI‘{V) 2 ( l)m(m+ ) m+v(v1 m+;(:; Ov {c':’ﬁ 2“) (2)
=0 1%2 ¢ \
O

with w? = v§-+vi4 2w vy008 2u, |vy] < [v,], Whilel d}’n(co% 2u) is the
coefficient of of* in the expansion of (1— 2« cos 2’%—1— o2)~ in ascending
powers of «;. Thus “\

S i m—2s7f n—25
On{cos 2u) = Z -1y 1;};+Z)r§3;‘oi} A @)
a={

and in particular

sin u O (cos 2u) = sin(2m+ 3{%’]2 cosu = {—I)™ § (—1)? sin{2p-+1}u,
:v p=0

N\ 4

the third member dbeing obtained by expressing the second in

exponentials an{@iﬁanding. Also from (5), {9) § 10.30 with —iz for z

Sl.n, nc = yfr = hsinhzsin ufr = 2ksinhzsinu/k, r. (8)

ertmg,{ fnr €, v, = ke, vy = ke, p = lin (2), and using (4}, (5), we

obtainmy*
}(}o r)sin o = usmhz z {m~4-1)w,, 4y Z (—1psin(2p+-1jz, (6)
N “\ =0 P
\ ’ with Wy = I (TS (s}

Hence from (1), (6)

4 . o
Se2'n Pl{za g} = ?2n+1£su}hz Z wm+1(m+l)x
) m=q

2o .
X f 2 (~—1)sin(2p+ 2 BiniDgin(2s41)u du. (M
4§ 70 =
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T

Since | sin(2m--1)ssin(2s+1)u du = 0 (m # o)

] the value of
w{m=¢s20)

0
{m-1) times the intsgral in (7) is found to be

7Bz = m{m4-1)[B,— Byt By—.. (=)™ By, ).~ (8}
Hence by (7), (8)

47 sinhz
Beg, {74} = (P2n+l__'7r81 Z Byt Wiz (9) "
10.36. Alternatrive form of (9) § 10.35. By applying )
formuia, A\ WV
1 "N
R R R A
to W, = J (o), 11 (p}— 11 (0}, (@{ 4 (2)
and writing w,,, = J,, (¢))J, 1 (v,), we obtam Qlet\recurrence relation
W - -—-{1’—1-‘ I)Slnhz w}}_i.l“{"m_{_]_ ’ (3)

Applying (3) to its r.h.s. repeatedly and writing m for v yields

=1 2 sinh #(m—+1) wmg,lf{?n—t-?)wmﬂﬁ—(m—]-?’ Wizt -l (8)
Accordingly we have N N

N S/

i (— 1)mB(zn+1)W'\ /

=0

= —Sln®fﬁl(%1+ 2a0,+ 3wy ... ) —

O —By@uytdugt. )t Byt bt ) =] )

3

4 . "
= Eﬂlﬂhz 2 (m+1)[Bl—Ba+B5'—+(—'1) 32m+1]wm+1 (6}
m=0

4, 2 7
= Esmhz Z By i1 Wpae (™)

Hence from (9) §10.35 and (7) above, we obtain

Sernisls ) = Gpam 3 (— 1y BEI 00 alvd) — a0l ()
r=0
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10.37. Determination of o,,,,. When z — 40, the asymptotic
form of Se,, (2. ¢) is, by (8) § 10.36,
882:&1(% g) o~ _(P;!rc+1wBI(2."aﬂv2)%CGS('Uz“J:_Z‘iﬂj' ) (l)
Comparing this with (5) §11.10, we see that
Pop+1 = 32.’11—1!':77'8]‘ (2)
With this value of 9,, , in (8) §10.36, (5) §13.11 is reproduced.

10.38. Integral relations for Fey,,(z,¢), Gev,,..(z. g, From
Table 17 we get

A 7 \:\
FeYZn(z: q,) = @2:; J YG{}C[2(COS 2%—{-—003}] 22)]}}C?ﬁk:ﬁ’t': Q) di. (I}
b AN

By §10.34 and (2) §10.35 we see that the valué’f the integral may
be obtained from the r.h.s. of (7) § 10.34, 'iT;.\}’;(kez) be written for
J(ke?). Thus

o 7 \:
Feyu(d) = B 2m 3 (- WAE ke W ike). (@)

If we let 2 — +oo and equate t}lé: &’symptotie form of the r.hs. to
(9)§11.10, we find that o8V

B = O8Rul0, Q)oe, (4, )/ 2w A3 )
With this value of <92n\{2} gives the B.F. product series for Fey,,(z,¢)

at (1) §13.20. (5
Again, from Té{}}e 17 we get

Geyay,. 1{z Q)‘ ‘Pznu f Y {[2(cos 2u+-cosh 22) tisin a se,,, (%, q) du;
(4)
and Q@m (2} §10.35 we see that the analysis for the present case is

the\same as that in §§10.35, 10.36, provided ¥, (ke?) be written for
J‘ w(ke?). Then by (8 ) §10.36

3
Geya,nlz q) = Py 7 2 (— ]—)PBQE?HD['L(%)Y:-H(%}"!L+1(’”1)K(""2)]'
=0 =
()
If we determine %,,,, as indicated above, the expansion (8) §13.20
is reproduced. Moreover, we have here a method of obtaining the
B.¥. product series representations of the modified Mathieu functions

of the first and second kinds, which is an alternative to that given
in Chapter XIII.
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10.40. Integral relations for Fek,, Ce,, Fey,, Gek,, Se,,, Gey,,
g > 0, with infinite upper limit. We commence with the formula

(z} = [e—”‘”’h"cosh oru du. {1)
0

K‘zr
This integral converges uniformly with respect to z if R{z) ==z,
z > 0. Under this condition, if —2:% cosh z be written for z, we get

EA(me — Nk cosh 2y = J‘ zezzkcoe,hzcuslmAizn) cosh Zru du (2} O\ '

0
. .\\

— J' grikooshzcoht o, (. q) du. ‘3 (3)

If z and % are real, the above restriction may be removel 1. since the
real and imaginary parts of (3) are absolutely and finiformly con-

vergent by §10,42, Then by (5) §8.14 and (3) a{@vc we have the

integral relationship \ “
Feky, (z, g) = Cenld™4) f "Mmh,c"”h“%;(u q) du. (4)
' = A N

's

Applying (4) §8.14 to (4), on equa.tmg real and imaginary parts,
we obtain

Ce%(z, q) = 2 cei’:‘i((i:;’ q\j sin(2k cosh z cosh #)Cey, (%, q} du ()

and RS
AN ®
Fey,,(z,q) = ,ch%{(;:; 9 f cos(2k cosh z cosh u)Cey, (¥, 9) du.
NG (©)
Similap quiy}sis leads to the following:
Feléi_;(z, 9 = C?ijﬂ—ll(gi‘flg ) wew‘ coshzcosht Cloy, o (2,q) B2, (7)

o0

Ceyinlz, @) = 2 18272(125;?;) -9) cos(2k cosh z cosh ) Clegy41(t6, ¢} 4t
' (8)

and

FeYau (. q) = ch% Ar?zefg’)ﬂ f sin{2k cosh z cosh w)Cegy (%, @) A4-
{9)
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To derive integral relations for Gek,, Se,, Gey,, wo commence
with the integral relationship {132]

vK (2) = J‘ —reosh W ginhy w sinloww du = Lot TGS (10)
i

R(z) > 0. Then by aid of formulae in §8.14 we find that

Ky 422, 9)
_ 2sey, 1 (3mg) 4 . .
7'."?8;;‘ 5 g2tk cosbzeosh i ginh » sinh u Sey,, |, (u,sg} du,
0 Oy ay
Se2n+l(zr g} o . \,,\
1
— 450l g) sin(2k cosh z cosh #)sinh 2 smh 2 Sey,, (4, ) du,
,‘ITB:('?'}‘L‘I'I) ’\
(12)
Geyan (2, ) N
_ 450y, (37, 9)
W%J(';nin - eos{% cosh z cosh b}smh zsinh u Se,, (v, q) du,
L O a3)
Gelky 152 9) N

ay

20885, o(}m, g} N _
— nt2 2¢keosh 2 coshw g i g .
= Tor BEH1D eRiiposhzcosha ginh zsinh u Sey,, (%, g) dit,

K (14)
Sey,, 42(2, 4} \'\i ’o;

! 1.
= — 4—822'%2—?2%2%’-}9’)' J‘ cos(2k ¢osh z cosh w)sinh z sinh « Sey,, ,o(%, 7) U,
g T
\ », 0 ) ] ( 15)
Geyansgl39)
Cseqnsa(3m, q)

=

J. sin{2k cosh z cosh #}sinh z sinh u Sey,, 4 5(%, ) du.

ST kmBere
Q~ (16)
Relations (11}-(16) may also be expressed as follows:
Gek2n+1(z 9)
%ﬁ?) tanh z J. ek ooshzcaahuseén_l_l(u’ (I) du, (17)

L]
S Cant1 (z Q)

2]

2 .
= 2T Doz | cos(2kcosh zcosh ) 9) s (19

0



10.40] INTEGRAL EQUATIONS AND RELATIONS 199

Geygusl(®9)

i 1 4
o 2889 11(37: 9) tanhz { sin{2k coshzcoshu)Sey, (., ) du, (19)
k”Biﬁn-}-ll
¢

Gekﬂnﬂ(za {Z) -

sty 2(%”759‘) " 2ik cosh s cosh ! ¢
= Jenppiin canha | e O ¥ ey +a(w, ) dit, (20)

Se!n-:—z(za‘g)

! 1 ¢ \\
_ Z8anialdm @) oy J. sin(2k cosh z cosh ) Sey, 1o (%, q) dt, ~N21)
litm B2 ¢

a

0 -
7%
< 3

%7 2
ay m'\\

’ 1, AS)
L. TF 16 03 PN j cos(3k cosh 2 cosh u)Seyayy(u, q) du. (22)

i B@n T 3
0 AN

\ GeYQnH(z! g)

On integrating by parts and using the resylf{hmt
Se,,(0) = Sem(cpg.';:"{),

(17}-(22) reduce to (11)-(16), respectively.

(4), (7), (11), (14), (17), (20) cOnverge if £coshz is complex, pro-
vided that its imaginary part(s greater than zero. The arguments
of the circular functions ’n:\ﬁhé integrals obtained by separation into
real and imaginary palzts\:nusb be real. The.nuclei in the integral
equations (3, (8), (QL\Z'}',“’(H)) are symmetrical in % and z. §§10.42—
1045 are based on\e*> 0,2 real: z 2 0 in (4)~(9), 2> 0 m (11)-(22).

7\
10.41. In}{érél relations for Fek,(z, —q), Gek,(z, —¢}. These
ate obtained\by applying (7), etc., §8.40 to (4), (7). (11), 14§ 10.40.
For ‘ilsalz’tple, if B(z) > 0,

E%!«:zn(z, —q) = (—1)" f:?;()%m ) J' —2ksinhsooshuCle, (y,g) du. (1)
.
§

The remaining relations may be obtained by the reader. There are,
however, alternative relations for these fanctions, Whlc}} we shall
now give, Applying (1) §10.40 to {9), (19) §8.30, we obtain

Fek:m(?-', —q) = Ce;;_l(g;?) f -2k coshzooshuCle, (4, —q) du. (2}
o .
0
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It should be noticed that for Ce,,, ¢ > 0in (1) and < 0 in (2).

o

SeoniilO 8 [ siconzcosnuge, (s —g) du.

Feky, (2, —¢q) == kom BEAD)

(3}
Similarly from {10) § 10.40 and {28), (35) §8.30 we find that if 2 > 0

Gek2rﬂ,+1(z} _Q)
_ 2€t00) [ st cestizcosuginh 7 ginh u Sey, a{w, —Ghdu, (4)

rAEnil
o RS \
Gek2n+2(zs q?) - \\
_ 2Zse3,19(0,9) g—2k coshzeosh . ginh »sink H'Sé;;-az(u: —g) du. {5)
km BERt9) O
H

1f (dwi+2) be written for z in the integrals in § 10.40 corresponding
to Ce,, Fey,, Se,, Gey,, they dive{g{} ’

10.42. Convergence of infegrals (4)-(9) § 10.40. In that
section functions are deﬁned, by infinite integrals whose properties
we shall now inv estigate. »(‘0n:«ta;nt multipliers will be omitted for
brevity., We exemphfy Jusing (6) §10.40. Both members of the
integrand are contingeus in 0 <L o << g, however large uy may be,
the continuity of #ha tirst member holding in any closed interval of

z real. Thu&}\exists, 80 we consider J with #, extremely large.

Then by %294 fi.l() the asymptotic forn:hé)f Ce,, (1) o 2~ sinfe+-4m);
where @)= 2kcoshw, du ~ dx/x. With these substitutions the in-
teg@l or consideration is
I= J‘ cos(x cosh 2)sin{x-4- )zt dz. (1)
T
Since |cos(x cosh z)sin{x+3n)| < 1 if 2 is real, we get

I< J‘ rHdy = 2x73, (2)

so the original integral converges absolutely. Further, the con-
vergence is independent of z in any closed interval 0 < 2 < 25, 80
(6) §10.40 is absolutely and uniformly convergent therein. Conse-
quently it represents a continuous function in the interval. In §13.60
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it is demonstrated that the series for Fey,, (2, ¢}—the function repre-
sented by {6) § 10.40-—is uniformly convergent in z, < z < z,, and
so Tepresents a continuous function therein. The convergence of
(4), (7) §10.40 follows from that of their real and imaginary parts.

10.43. Differentiation under the integrai sign, This is valid
provided the resulting integral is uniformly convergent. To exem-
plify, we differentiate (6) §10.40 with respect to z, and obfain
{omitting the external multiplier) ,

ginh z f 2k cosh u sin(2k cosh z cosh #)Ce,,,(u, g) du. K\ "\\{})
o

Ny

Thus we consider the integral K ‘Y
I = ginhz f sta(x cosh z)sin(z+ }m)x-t dz O (2)
% .\\:

1 ”
= %£Mnhz J {~cos[z{coshz+ 1)—}-1}1:1—4’—’,\
— +o N\
' +cos[glgoshz—1)—trllz~t dw.  (3)
Now —cos| | oseillates between finite limits for any zin 2, <2< 2
8 !> 4w, while 21 -0 monotonically. Hence by a known
theorem? the integral converges uniformly with respect to z in the
nterval. It vanishes at z 22,0, owing to the factor sinhz.
In the second integral of (3) write
t(coshg@T) =y,  di = dyf(coshz—1),
and we get N
. \:"\s. ] o .
O~ 20 [ oosty—imiy-id, @
N (coshz— 1}

Yo

: 0\.’ ' 3 . '.
t'hed{ﬁpf;r limit being y = x(coshz—1), & - +-c0, and the lower limit

4o = %ylcoshz—1).
From what precedes it is clear that, excluding the region of 3 =0,
(4) s uniformly convergent in any closed interval 2; < # < 2. When
2~ 0, the external factor tends to 1/+2, the upper limit y —~ $22%,
d g5 > 122, Thus as 2 > 0, yp > 0, but y >0 or © according to
the way ,_, 0, i.e. it is not unigue. Henoce (1) is uniformly con-
Vergent in 0 < 2 <z < % Accordingly Feyu(zq), a8 defined

+ See Bromwich, Theory of Infinite Series.
pd

4981
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by the integral, is continuous in z > 0. A second differentiation
under the integral sign is not permissible, since the resuliivg integral
is oscillatory and diverges owing to presence of the factor xt in the
integrand. The preceding conclusions apply equally to (5}, (8), (9)
§10.40.

10.44. Convergence of integrals (11)—(16)§ 10.46. The inves-

. tigation follows on the lines of that in the preceding section. In

all cases we get an integral akin to (3) §10.43, so the integrals are

uniformly convergent in z, < z <{ z,. Thus they represent continhous

functions. These integrals cannot be differentiated undef $he sign,
since the resulting integrals diverge. Asin §10.43, 2z, €&t = 0.

1045, Convergence of integrals in § 10.4;5"}The analytical
procedure is similar to that in §§10.42, 10.43, {Fhus for (2) §10.41
we consider \/

J. g~ 005k 2y le) dupfx = J e.\’?‘é’ghz'”x—i dx (1)
g g )
with 2 = 2k coshu. It is obvious tHab{1)is absolutely and uniformly
convergent in 0 < 2z < 2,, 80 F@I{;n(z, —q), as defined by (2) § 10.41,
is a continuous function of 2. Differentiating (2) §10.41 under the
integral sign with respect tev2 leads to a consideration of

A

’{:‘,\J. a—tleosh 2=t Joe (2)
N4
This is seen tole absolutely and uniformly convergent in z; <2 < %
so long as thé“neighbourhood of z = 0 is excluded. It diverges if
2 =0, fI‘\h'e\'és conclusions apply equally to (3) §10.41. In the case
of {4).,}(5)' §10.41, integrals of type (2) above are involved, so the
prptiéding conclusion applies. These latter integrals can be differen-
mst,i“a'téd under the sign, except in the neighbourhood of z = 0.

N 10.50. Integral equations for ce,(z, q), sém(z,q) with nucleus
g2ikicosh £ cos ovs f4sinh Esinqsin§) T4 js readily confirmed by substitu-
tion that [183]

aw
= J‘ i@ aos B4y sin B (0) 40, (1)
9
J(8) being an arbitrary differentiable funetion of 8, is a solution of
2 2
PLLP | e, (2

2 ¥ o
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Introducing elliptical coordinates (Chap. IX), and taking
4k = K2AE > 0,

(1}, (2) become, respectively,

e
[ = j e2ikwf(d) do, (3)
o
. AN .
and 75 .25 1 9k(cosh 26 —cos 29} = 0, - (4),
a8t | Bt A

withw = cosh & cos 4 cosf+-sinh ¢sin 5 sind. The physical interpréta-
tion of (3), (4) deserves to be mentioned. (4) is the equation for
propagation of ‘elliptical’ waves, and (3) is a solution thereef. Now
@k reprosents a system of omnidirectional plane waves, “since 8
varies from 0 to 2n. Hence we may visualize ‘ellip:tiﬁal’ waves as
being synthesized from ‘plane’ waves moving injall directions ()
und properly coordinated in amplitude and phase] f(6)].

As a suitable scintion of (4) we take { = :fﬁf)fz(ﬁ): where f,, f; are

solutions of R
2 ' &N
%— (a—2k% coB 2£)f, = O ®)
alld fg_zig __}_{(‘{\:_2&:2 oS 27?)f2 = 0, (6)
' : 1’1.\'\‘.:
respectively. \

The next step is tg.idéﬁne f(8), so that (3) is a solution of (6) with
{ written for f,. Jiwm (3) |

de A ) : ‘
d“,}_i = —.}'ﬁ[‘lk“(sinh £ cos 5 sin§— cosh £ sin g cosf)*+-
N _
O ) o
N %”\'\; ' 2ik{cosh £ cos 5 cosf4-sinh £ sin sin )] f(6) 8. (7
0
(sinh £ cos 4 sin §~ cosh £ sin n cos§)?
= (sinh ¢ sin 4 cosf— cosh £ cos » sin f)*— {cos 2n—co8 26). (8)

Substituting from (8) into (7) gives

27
1 oo
g}% = j f(a}[w(coa 2y — cos 20) - éﬁ]em d. G
o



204 INTEGRAL EQUATIONS AND RELATIONS {Chap. X
Then by (3), (9)

d = —}- (a—2k2 cos 29)f = If{ﬂ}l:a 2k? cos 28—]— ]e“"‘w de.  (10)

But

f(&) 53_2 (ezu'cw) — %[ j'(g) i (ezikw)] a};{: ) ;3( 21kw)

of(@ &t
— 69[f(8) 89( zq,kw) f( ) sikw] __!_ 8'}:62”“0 ~ (]_ 1)
Substituting from (11) into (10} leads to R \:\

&%

i 53+ (@—2k* cos 2 = f [f"(8)-+(a—2k% cos 28)_{(9}]92“"% a9 +

127

[f(g) 36{ 2£kw) ) 6f(3)egika (12)

If f(0) satisties (6), the first { ]in (Lé) vamshcs, while if f(8) has
period =, 2w, the second [ ] vanishies at the limits. Under these
conditions { satisfies (6) as reqlm:ed so f(f) must be a mulitiple of
ce,(0,¢), se,(f,g). Also with thie'same q, ¢ in (5), (6) it follows that

SiE, @) oc Cey(£,q) or Se, (&), and fyn,q)oc cep(n,q) or sex(n.4).
Thus (3) yields the integm] equations

C%ff)cem(n) = p, f etk oe_ () df (13)

,.\

and {
2

en(E)sen(n) = o, f e2ikwge (8 df. (14)

P crm«%re the characteristic values of the nucleus ¥,

,10.’51. Evaluation of (13), (14) § 10.50. We commence by
<‘j'riﬁng
2w = 2k(x, cosf4-y, sinb) = z, cos(f—a), (1}
where .
x, = xfh = cosh £ cosn, Yy = y/h = sinh £sin v,
2, = 2k(cosh® cos?y+sinh?¢ sinn)t = 2k(cosh—sin?y)t = &7,
and o = tan—Yy,/x)), or tan« = tanh{tany. Next we use the ex-
pansion {202, p. 43]

e'i[z] COS(H—E!)I _ Jlt.l(zl}_i_2 E ip COSP(G"_'{‘X)JI,(ZI); {2}
=1
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together with that of cey,(6), in the integrand of (13) § 10.50, thereby
obtaining

2 0
G cern(7) = paa | [ole0) +2 3 07 cos p0—a) e
J
X Y A@Mcos2rf df.  (3)
Now =

o -

I [J[]{zl)+2 > P cosp(ﬁ—a)Jp(z,)] cos 2rf df = 2mi* cos 2rady(z),
i Pt (4)
the other integrals vanishing by virtue of orthogonality of t&:m
circular functions, Also, the series concerned are absolutely and
uniformly eonvergent. Hence by (3), (4) we obtain the I‘f?;gtlrﬁ

Cegn(€)cens(n) = 2mpg, i (—1y A%V cos 2 Jn: \;), ()
F=o j

this series being absolutely and uniformly convergent. Since the
rhs, of {3} when evaluated is real, it fcalloy@x that the imaginary
part vanishes, so \%
2m L ™
j sinfz, cos(f—a)eegn @) d8 = 0. (6)
1] N "
To evaluate p,, in (5), put 5 =9, then « = 0 and z = 2kcosh¢,
giving Q%
Ce,n{£)ce,, (0) ;éﬂpzn 2. (— 17 A Gy, (2k cosh §). (7)
\ =0

Thus from (7) above and (15) §8.10,
Pan = 085,10, q)oey, (37, @)/ 2m A" = Paaf2m. )

Using (8) in 13}§§}b.5(}, and remembering that the imaginary part
vanishes by (6);"we get the integral equation for ce;, (4, ), namely,

N, m .
~O Coy.(£)cey,(n) = poy J cos[z, cos(f—a)]ces,(d) 48 (9)
4 ] .
= pan 3 (— 1A cos Zrady(m).  (10)
=0

10.52, The remaining integrai equations. Analysis similar to
that in §10.51, using the multipliers p,,, s, defined in Appendix I,
leads to the tollowing;

Pans1 = P2ar/27, o

! Whon used in (13), (14) § 10.50, pynss G2as2 st be multipliod by —i, since the
L. are real
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s

Cegy1{E)eapsa(n) = Poni1 j sinfz, cos(f—a)leey, () df (2)
!

= _Pzn-i-lrgo { - 1)"4%31?1) 008(2?‘—[— 1)0“};21-+1(21)’ (3)

2
J cos|z, cos(f—a)]ee,, 1 (8) df = 0. (4)
]
Toni1 = Sgn1a/2T, (5)
2 o
Seay11(£)8€gn11(0) = Oonpy f sinz, cos(f—a)Jses, (0} 8, (8)
o A
© NS
= 82-n+1 z (—1)’Bé§1‘%’1] Sil’l(2?‘—'+-"1.)?):";172r+1(21), (7)
r=0 ) .
2 O
f cosfz, cos{f—a)se,, . (B da‘: 0. (8)
5 :
Canrs == Saneaf2e, (9)
NN
Sean 12(€)8€0,10(0) = Gapie j UQS[Zj‘GOS(H—a}]Seszrz(ﬁ) dé (10)
RN
= _sg,i..;;‘.‘f"i (— 1) B2 sin(2r+2)a Jy,aqlzy), (1)
Y r=0
2w ’
‘ f~$in[zlcos(6-—a)}se2“+2(9) df = 0. (12)
,\w‘.o’ .

By analysis sihilar to that in § 8.50 it may be shown that the series
herein and 1v§ 10.51 are absolutely and uniformly convergent in any
finite region of the z-plane.

.”\‘o

“{%3 Expansions of Z?i{%(coshf cos 7 cos §-sinh ¢ siny sin )}

”\:“ﬁc‘ > 0. Assume that
N cosfz, cos(f—a)]

= 3 [Canln)Cepnl€)00un{0)+Son a01)S03ms(E)50nsal®)]. (1

Multiply both sides by ce,,(8), integrate with respect to § from 0 to
27, and we get

e .
f cosz; cos(fl —x)|ce,, (0) df = w Cy,(7)Cos, (), (2)

Q
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the other integrals vanishing by virtue of orthogonality (§2.19).
From {2) above, (8), (9) §10.51, it follows that

Csn{"}) = 20827;(1?)/})21;' (3)
Multiplying both sides of (1) by sey, .2{0) and proceeding as before,
we get San+2(n) = 28€3,15(n)S5n 12 (4)

Substituting (2), {4) into (I} yields the expansion
cos{2k{cosh £ cos y cos §--sinh £sin ¢ sind)}
N\
-2 i [Cez;-r.{g__)_pezﬂ(n)cezn(g}+SBZn+2(§)Sez-n+3(7})86211-#2(8):!. (5k
'\ K

& Pan © Sanrg
By similar analysis we find that \ o

.
770
« 3

sin{2k{cosh ¢ cos n cos §-sinh ¢ siny sin 6)} 0
— 2{;“ [Cezn+1{§)062ﬂ+1(7})0323+1(8)_1_Seen+i($)se2n+lf7j)5é2n+1(9):|l (6)
= Penar Sansd

In (5), () write ¢£ for £, then, referring to § 10.‘60,3}‘1’9 r.h.s. of (5) above
reduces to the form (7) for @ = 0, and to (8), ford = 1=, while (6) above
reduces to the form (9) for § =0, and tq(lh} for = }=. Accordingly
we obtain the expansion Y

gizyensif—n) 2\

== eihiwondiysing — oogfk, (o €090ty sin 8)}+ i sin{k, (x cos 84y sin 8)}
o ’\\"
=2 Z [ - Cezﬂ(f)cew(}})ce%(ﬂ) + 8—““1—Sesn+2(f)sezn+2(7}')sezn+2(9] +
A0 &

2R 21 +2

+1 7'&',;*\@32“1(‘5)0921;4»1(ﬁ)cezmlw) +

2R +1
2 8

+ Se2ﬂ+l(‘f)sezfe+l(7f)se2n+l(9))] .M

o >} S2n+1 _
Whei\tHe fandamental ellipse tends to a circle, it may be shown,
by aid of Appendix I, that with § = 0, 3, (5), (8) degenerato to
well-known expansions in B.E.

1_0'60- Expansions of nuclei in characteristic functions,g > 0.
If in (2)§10.11 we put y = R(u)8(z), and proceed as in §9.21, we
obtain the wo ordinary equations

d*R

H+(a—2gcos2u)ﬁ’ =0 E L
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and if—]— (a—2g cos 22)8 = 0. (2)

For a given value of ¢, if « = a,,, the produets of the first solutions of
(1), (2} are x,,c = ¢, e (u)ce,(2), while if @ == &, we have

Xms = Sm Sem(u)sem(z}s

c,, and s, being arbitrary constants, m taking positive integral
values. Hence we may write
QY
x= 3 cnoen()oen@ 3 spsen(ulsen(zle (3)

Now y == e2koosucoss gnd g-2ksinusing ppp glgo solutmns 01: (2)§10.11.
1t appears, then, that these composite integral ianctlon gointions may
be expressed in infinite series of periodig_ M@’t}neu functions. The
real part of the first, being even in u, z,98$he nucleus for ce,,(z,q).
Now the second series on the r.h.s. of (3{\1}; odd in u, z, while ce,,(2,9)
hag period ». Let us assume, then b'hat

c08(2k cos u co8 z) Z €, C8g, (U)CE(2), (4}

the r.h.s. of which is even, n u, z and admits the period = in both
variables. To determ}ne ¢y, multiply hoth sides of (4) by ce,,(u) and
integrate with respett'to « from 0 to #. Then

o X\ ,,-
f c08( 2,008 1 €08 2)cey, (1) du = ¢y, 00y, (2) f ced,(u) du,  (8)
2 AV ¥

all othei\ferms on the r.h.s. vanishing by virtue of orthogonality
8 ..,‘1{)) Hence by {5) above and (1) § 10,12,

AN cezn(z}fqﬂn - ?Zﬂc'Bn ceﬂn(z)
"\ 8o, using (5) §10.1
\ 3 g { }§ 2)
Con = 2;""77}‘211 = 2‘4(02“}/032?1(%77? Q) (6)
Consequently from (4), (6) we obtain

og

cos{2kcosucosz) =. z “T)q)ce%(u)cezﬂ_(z), (7)
— 2

which is the expansion of the nucleus for ce,,(z,¢) in terms of the
functions themselves. The seven remaining primary nuclei in
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Table 14 may be expanded in a similar way, and the results are
given below [97]:

= (2 )
(2 sin  sinz) = z .
cosh(2& sin % sinz) ce%(())cem( Jee,, (), {8)
(2n4D)
sin(2& cosu cosz) = 'ﬂ%z 43 cez,lﬂ(u)cez_n_i_l(z),
Ceap11(3
e
B(2n+J
ginh(2& sinusinz) = 2k Z BMI((})SGE““(E)SBMH(z} (10
o 2, A@nD &)
cosucoszcosh{2ksinusinz) = Z cemﬂ(u)cezﬂﬂ{z);"\. (11)
08y (0 \ o

N

#=0 Y

7
 {

8Ca +1 (U }SB'zJHl(z) (12}

‘ ) o= B(2n+1
sinusinz cos(2k cos w cosz) = z —-(—)
B€gy 1l 77

n=

’ o B(2n+m \o
sinwsinzsin(2k cos # cosz) == — Z msezm o{#)9€g,19(2),
{13)
‘Bgmm
ﬁ 2n42 0)

©08% ¢0s 7 sinh (2 sin wsin z) = k Z 80qn12(U)SCgc2(2).  (14)
By writing iz for z in the aboye relatmnshlps series are obfained in
terms of Mathien and modyﬁ:sd Mathien funetions, For z real, con-
vergence of the series f‘s@ows from the fact that the A, B — 0 as
> 00 {see § 3. 35).

10 61. Results" aedumble from § 10.60. Writing u = §r in
7) § 10.80 yields( °
A\\“‘ 1=2 3 Affees(z) | (1)

A&summg the r.h.s, of (9) § 10.60 and its first derivative are uniformly
Ril*gent with respect to u, by differentiating and substituting
%= 37 we get

3 {2)
COs2z = E Aizn'u)cezwﬁ—l{z)'
=10

In & similar way we find that

Si_nz - § B‘£2n+1)sezn+1(z)’ (3)
w=0
sin2 = 3 BP*i¥se,, .5(2) (4)

rn=
Ee

A
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Inserting the expansion of ce,,(2) in (1} gives
o s
1=23 A0 5 A oos 2 5
= =

Since the lLh.s. is independent of 2z, equating constant terms, i.e.

¥ = (), yields 0

1= 3 3 [4§V]. (6)
=0

Equating the coefficient of cos 2rz to zero leads to

z APRAEY — 0 (r 3£ 0). N (T
hlmdarly we deduce that Oy
o O ’
E [Atsn+1) 2 = Z [B{E-n+1)]2 — Z Bt2u+2}:]‘2‘; 1. (8)

Using the orthogonal properties of the funotlcn@sthe following expan-
gions may be obtained;

cos 2rz = Z AR oo}, (2), (9)
\\
cos{2r+ 1)z = Z;Ag?,“ D ey, 1(2), {10)
gin 9r—|—1 » Z BEUse, . 1(2), {11)
sm@r—l—z z = E BEri¥se,  o(2), {12)
]
nz [AEoT. " ﬁ[flun D2 - 2 [BRr v ﬂgu[Bé%i-EmJ-z =1, 03
#2+0

{A{an{&n} [,_1(2:« 1}A{2r1+1)] _. z [Bgrj_—lngé%ﬁﬂj

‘§ 2 [BEri BEn D] = 0 (14)

a3
NS

”\:]\:i‘bvided ¥ 5. Additional relationships between,the functions of
\/ integral order will be found in reference [97].

10.62. Additional expansions. Assuming uniform convergence
of the series in §10.60, numerous results may be deduced by dif-
ferentiating or by integrating term by term, Two examples involv ing
B F. will suffice to illustrate this point. Integrate both sides of

7) § 10.60 with respect to % from 0 to =, and we get

1@, Ji2kcorzy - 2 i FAFE™ 2 ee, (2, 4) cey, (3m ¢ ()

=
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(=}

[fz=0,  H2k) = 2 X [Ag] ooy, (0, g)feen,(im, 9); (2)
=

while for z = iw 1 =23 [AfE], _ (3)
n=g
‘a5 at (6) § 10,61,

90, Multiplying both sides of (7) § 10.60 by cos 2mu and integrating
as before leads to

(2"}" CoB z) z A(JR)AQR) 062?1{2, Q)JICBE-E(%TQ g) . (Tn" = 0) (4)\

Rigorouns proofs of the validity of results in § 10.53, 10.60, ll) 61,
and a demonstration that, under conditions similar to thoge th ihe
Fourier case, a function of period 7, 2 may be expanded in a’series
of Mathieu functions of integral order, are beyond the, scope of the
text, For functions haA« ing period 2sw, s 2= 2, the Mat}ucu functions
of order 2n4-8, 2n-}-1-4-8, B = pfs, 0 < B < 1, wahld’ be needed (sce

§52.20, 4.71), \\'
10.70. Integral equations of the second kind. We commence
with the equation A
a2y . A M 1
w_{_[aﬂggl&{w)]y - 0, (1)

where i{ww) has the same propérties as in (1) §6.10.
“‘\lltiplvmu throughout byx invy, ¥2 = @, gives

sin vuj’ri_}smvuj == 2q(wu)sinvuy, {2)
50 [Einvu d& -La f sinpaey du = 29 f Plou)sinvi y di. (3)
0

Thuy A\\“
o ? 2 z .
[y’Sif}f?‘?ﬁ"—v J‘ cosvi dy +a f sinvuy du = 29 [ {wu)sinvuy du, (4)
) 0 0 0 ’

ai'ld\ultima;te}y, gince & = »2, we get

=
¥ (2)sinvz—yy(2)cos vz = —wy(0)+-2¢ f Plowsinvey du.  (5)
0
ff in {2) sinvu is replaced by coswu, the eguation corresponding o
8} is
¥ (2)cos vutvy(z)sinvz = ' ((0+ 29 | lwtt)oos v y du. (6)
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Multiplying (5) by cosvzfv, (6} by sinvz/y, and subtracting the first
from the second, yields the integral equation

y(Osmvz 2qJ'

y(2) = y(O)eosye L " sin v(z—ulb{wn)yiu) du. (7)

Hence we are led to two solutions of (1), in the form of the integral
equations of the second kind with variable upper limits, namely,

o) = a0zt AOIE L 2 [ i iy, (9

0 N
and’ A\

. 7'N\S “
¥:(2) =_ya(0>eosvz+y2(°’s’“ ""+ *in vE—up(wa(v) du. (%)
] e\
If we specify the initial condit-ions, &8 in §4..10}"[‘,0 be
WO =1, y(0) R0
%0 =0, =1,

(8), (9) give o |
¥,(z) = cos vz+gg ’.g,i:r;iz'(z—ﬁ)t,b(wu)yl(u) du (10}
vv 0
wd g =S f sinve—upplonys(u) du, (1)
1l

respectively., For }ia,t‘hleu 8 equatlon Plwu) = cos 2u.

10.71., Integi‘al equations for y”—(a—2gqcosh 2z)y = 0. Using
the procedpre/in §10.70 but with sinhwu, coshyu for sinv, end
COS Vi, res‘pet:twely, we got

J(z;§ (O)coshz + LR [ inhsfe—wjcosh 2uy(e) 48
v
(1)
0
;F’or the initial conditions in § 10.70, (1) yleld%
¥,(z) = cosh vz--—— f sinh p(z—a)cosh 2u y,(u) du (2 finite) (2)

and

Yolz) =

smi:wz 2?’ sinh »(z—w)eosh 2u yy(u) du (2 finite), (3)

L]
where y,(z), y,(2) are, respectively, even and odd solutions of the
above differential equation,
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16.72. Solution of (10), (11} § 10.70. Write p = 2¢/v, and assume
Wt ye) = cosvabpo e+ pE) F P ()t oo M
the ¢ being continuous functions of 2. Substituting (1) into (10)
§10.70 we get

peyfz)+pPe()+
=p j sin vz —u)(wu)f cos vu+pe, (u) -+ pPe, () + ... ] du.  (2)
L]
Equating the coefficients of p on each side of (2), we have

e(2) = | sinv(z—u)eos vu lewn) du o

&,

7
4

z
o= .{ sin v{z—2u) +sin vz b (wu) du \\
B \

= isinw f hlewn) du -3 J. smv(z—,gu)gb(wu} du,  (3)

This is now subs‘bltuted for e,(#) into the rh s. of (2) and ¢y(z)
obtained by equating the coefficients of @2 on each side. If p and
Pllwn)| are small enocugh, a first appmmma,tlon is given by
%(2) = cosvz-(g/v) I:sm vz f ;I{;(am) du + J. sinp(z— 2ulifwn) du}
‘o) (4)
the omitted part being O( 1792) S1mllarly for (11)§10.70, we find that
) o T2 ”z_{q/vz) dos vz f o) e — [ cosvla—2ulen) ‘*"‘]
0

(5)
the omitted p&b”being O(1H8).
1073, {&lt'ernatlve forms of (7) § 10.70. This may be written

\9(2) = C,cosvz4-8, sinvz + = %q f sinv(z—u)plww)y(u) du, (1)

Whete C, = y(0), 8, = ' (0)fv. Now let @ = m24A%, m being an
integer, then (1) § 10.70 becomes either :
Ez-;Jr[m”—{—A% 2g w2}y = 0 2

or

Y e (ag g —mily = 0 ®)
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Since (1) is an integral equation for (1) §10.70, it follows that the

integral equations of the second kind for (2), (3} are, reapectively,

y(z) = C, cosmz—l—ﬂ%sinmzﬁ—% J. sinm{z—u)[ 2g $(wu)— A% jy(w) du,
0 (4)

y{z) = CycosAz-+Sysin Az 4 N J sin A(z —u)[ 2 dwu) —mTy(u) du.
(5}
Alternatively, if we take @ = of+of, by varying either a’i\)r @3,
keeping @ constant, we can write down an infinite numbef’ Qf integral
equations. The ', § are functions of ¢. O

. W
L 3

10.74. Integro-differential equations for “<"~’«:

y" 2wy’ +[a—2q Ylwz)y \Q\
The integro-differential equations corresﬂondmg to (1), (4), (5) §10.73

are, respectively, 7\
& \\ d
ylz) = (r cosm—{-S sinvz 4 — '[ RITY v{z W [QQ’gb(wu)—fbcﬁ]y(u) dat,

(1}

3

ylz) = O, cos mz+ 8, sin ?3@3..1{—

1 & . ‘.'0 - e . d . d | 2
+%-Jt§1nm(z—1¢-)[2-g¢(wu) A —Ax%]y(u) w, {2)
and \\ :

yiz) = C‘\coaz\'z—f-S; sin Az

‘:\“ +3 ' am)«z-«u)lzq:j; wu) —m?— Zxad—} y(u) du.  (3)
P
be’(j S are ﬁm('flom. of g.

“10.75. Second solution of Mathien's equation using 4
§ 10.73. The integral equation may be Spht up into the two parts,
namely, .

iz = 0, cosmz-}-% j sinm{z—u}(2q cos Ju— ATy, (u) du (1)
and

Yolz) = S, sinmz + ,L f sin m{z—w)(2q cos 2u— Ay, (u) du- (2)
3
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Let @ be the characteristic number for cey(z,¢), then we have to
determine y,{2) from (2). For cey(z,q), by (5} §2.151

5 TR3
— 4 T gt T gt £
@ ]2g ]3824q 1oreny (%)
iy _ s _ P 63
go with m = 2, Az = --l—ng mq4+ | (1)
Assume that
yulu) = soluw)+gs(ud-FgPs0m) |- {5)
S( — L+ g HB P Hha g+ )
Substituting (4), (3), (8) into (2) gives <\ \

8y(z)+gs,(2) +q28»(2}-#--q333 2)4... = (1 +Pg+ B 4° +B3g3—|— )m?rﬂz—l—

#in 2(z— 2 . *_»s: g’"
+j. nee u)[qem v q+27648g \}X

X [8g(n) g8y () pfa(u) -] du. (7)
Equating like powers of ¢ on both sides 0f~(‘7‘\1€ads to
¢ 8p(2) = sin 2z, K% ' {8}
¢ 8,(z) = B,sin 22+ f sinﬁﬁi‘;-u)cas Do sy{ue) dre

RN

NG

>
= B, sin Zzﬁ—} j sin 2(z— u)sin 4u du

(131 >1)sin 22— sin 42. (%)

If for the sake Q{Ai‘lu‘str&tlon we adopt the normalization of § 2.11,
the coefficien ofisin 2z is unity for all ¢. Thus in %,(2), $a(z},.- . the
coefficient o{ } 22 must vanish, so

e) ) BL= —1} and &(z) = —&sindn
'“\ N
4

-1
2 . o
q 82(2) = ﬁ.z s1n 23—f~ f sin 2(3*-'1&)[(:03 D 81('-’!')"—})1'30(”}] du
[ : '

(10)

du

- . i 5
= Pgsin 2z— z—au)l — cos 2 14?:,—:——- sin )u
Ba Z f sin 2(z u)[ucoq Du sit 71

4]
= (32 - 1-28)‘4111 2z lzcos M-Lg—;; sin 6iz. (11}
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9 1 1
Thus By == 198 and s,{z) = geoos 22+§é_481n 6z, (12)
619
3 = — 2 \gin 22—
g s5(2) ( 3 34560)31“ 2
53 1
— 4z — n4 8
[ z+ zcos 1382481 z-+ 250—%Obm z],
ivin By = 619
givng 3~ 34560° )
and \
53
e 4 n 4. Sin 8 13
84(2) [ z—{- Sgecosdz— 13824 ndz4- mf—x,s z] (13)
and so on. Then : ;”7;,

yylz) = % q"s,(2) = sin 2z — —q sin 43¢ ( z@es 2z + — rs]l’l ﬁz)
#=0

— — — z‘a.h.... 14
q3( z—]— zcoq4z m&}l +z%040q1n8). (14)

Thus ;
yolz) = fey(z, q) =1q2 1_£ 2 Vzeey(z, q)Lsin 22—--1—qsin4z+
2 Filags R 144 52, , -
1 N ’o 1 53 1
. TF 15
+§§§%%Smﬁz—_5l2q3( 27811"4“‘:*4531“ &.r)—f ... (18)
+8 )
1 %\9 ., 619 , _
— VT8 128 .. Jsin 2
( 47 1387 T 545607 )*’m 2+
\;tg%'bfsinQ(zm@a)[gcos?um; 2764§94'" ]feg(u,q)du. (16
O o

A'kimilar treatment of equation (1) would yield the series for eey(2,9)»
«the first solution of Mathieu's equatmn with @ = a,, as given 8b
(8) §2.150. In generai, if 4,(z) — ce,(z,¢) and the g series for @ I8
unknown, write

a = mitay gtapgt ot (17)
make the coefficient of cosmz unity, and determine oy, o 50 that
all terms in the expansion are periodic in = or 2, a.ccordmg as M 19
even or odd (see §2.13 et seq.). To obtain se,(z, ), treat (2) in this
way. ge,(z,q) can be obtained by analysis similar to that from

(8)-(15).
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10.76. Integral equations for y,(z)y,{z). Let #,(z), #.(z) be
independent solutions of

4"+ (a—2gcos2u)y = 0, {1)

for the same &, . Then writing £{u) = (2q cos 2u—a), we have
—&(uy, =0 (2)
and Yoy, = 0. ()

Multiplying (2) by ¥s, (3) by ;. adding and integrating with respeet
to u from O to z, gives

= =z &
[ i atyige) du = f (v ya-+ Yo y0)éCu) du, RO
o e

50 j d(y193) = f £(w) Ay, 95). e

Hence by partial mtegratmn of the r.h.s. of (5) we ﬁnd\that
N@ya(z) = ¥1(0)ya(0) 1 (0)ya(0)E(0)+ N,

+(a )G+ 42 ﬁma'yﬂu)smm. (®)

If the initial conditions are #,(0) = yz(O) = 1, 1(0) = #,(0) = 0, the
first two members on the r.h.s. of 16) Vanish, and we obtain

Bilelyaz) = yl(z)yz(z)gz)ﬂq j plwy(wsin 2udu. (7)

Results similar to (6), (7)\n\ay be obtalned in connexion with Hill’a
equation,

For the equation y —(a 2q cosh 2u)y = 0, with

N -
Wwe get \\ x(u) = (29 cosh 2u—a)

O
z)yz‘{g') = 1 (0)a(0)+41{0}ya(0)x(0) —
{‘: — @)@+ f yy(wya{w)sinh 2u du.  (8)

10.77. Differential equation satisfied by w{z) = #:(2)¥:(2)-
Mathiew's equation may be written

" —ty =0, (1)

:'Ohere § = {2q cos 2z—a). Diﬁerentiating (1) gives y'—&y—£y =20,

W —Eh—En =10 @

ond Yy —Eys—EYa = O (3)

4661
Ff
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Multiplying (2} by ¥a, (3) by #;, and adding leads te the equation

Wt v — 28y~ Yt tatn) == O (4)
From (1) we have &), = 0 | )
and (ya—Eydyr = 0, (6)
so by addition _
Nty = £y tyy) = &' {7)
Also w” = Y'Y Ty Y+ 3 Yot Y2 1) A (8)
Hence from (4), {7), {8) the equation sought is A \
W — 4w’ 2w = 0. R\, (9)
This result applies to Hill's equation (1) §6.10, rovided
“3
¢ = [29(w)—a]
The complete selution of (0) with three @i}xaw constants is
= Ayi+ By g (10)
\l
«5‘ \
R\ Sl
RS Y N
&
Ny
&
g\'\\./
RS,
p. N \.)
iﬁ\x'&”'
O
RS



XI
ASYMPTOTIC FORMULAE

11.10. Approximsations. The modified Mathien functions lend

themselves readily to the derivation of approximate asymptotic’

formulae when R{z} is large and positive. If % and z are such that
2kcoshz ~ ke* == v, this being appreciably greater than the order of
the funection, the dominant term in the asymptotic expansion of
{2k coshz) is 1202, p. 158] O\

(2fnv)t sos(v—fm—rm) = (— 1) (2fmo)tsinv+}a).  O(1)
Substituting (1} in (15} §8.10 and using the multip]iersf};;;‘; 8, In
Appendix I, leads o the approximate result "

Cegul2. 9) ~ Poa(2fmo)isin(e+1m)  (agh” (2)

Writing N
Jor11{2k cOsh 2) ~ (2[mv)! c08 {v— 5 3(2r+ 1)}
, = (— 1) (2fmy)ps(s+ L) (3)
in {1} §8.12 leads to RN

Cezn i—l{z: Q) i _1"2;¢+1{2/‘{7ij*:603('”+ i‘ﬂ] (a2n }-1)' (4)
The same result fellows from (218 8.12, while (6), (7) §8.13 give with

tanhz ~ cothz o l,,”x\ Pk sinhz ~ Zkcoshz =~ ke,

: L
) Beg, (2, q) ~2 ..—xmﬂ(ﬂm})* cos(v+1m)  (bgn)- (8)
From (4), (5) when yJB{%) > 0 is large enough, it follows that
ngl\irl(zj q) ~ (Pans1/San1)50ani(2 @) - (6)

From (1), (l’h\i? 8.13 we derive
\ 2 885,40(2,4) ~ S 2fme)isin(v 3} (Bon o) (7)
and thf (2}, (7), when R(z) > 0 is large enough, we may write
Cegy 102, 9) ~ (DanrofSanselS€on 12l q). (8)
As 7 {large and real) increases, all the above funetions, and those at
(9)-(12;, alternatet with ever-increasing rapidity, but decreasing
amplitudes, Wher. 2z - +co they all tend to zero exponentially.

The second solutions corresponding to the first given above are
Gefined in §§8.11-8.13, Using the multipliers in Appendix I and

t An alternating funetion is one which osciliates and has roal zeros.

Q!
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proceeding as at {1)—(4), we obtain the following approximate asymp-
totic representations:

Feyan(z’ QJ m~ "'“p2n (%) %GOS(@—f— _i?r} {ng}, (9)
Feyy, (2,4} ~ —Pay +1( 2 )%sm(i}—f— im) (ag,.q), (10}
Gevm !I(z QJ - _"?Eu +1( 2 )% Sll’l(b‘—f—-i?’r) (bﬂnﬂ_)s (II)

2 R\
Geyan.4a(2,q) ~ —"82n+2( ) cos(v+4n) {Danra}- (12)

A

The dominant term in the asymptotic formula for Fey2n+2(z q) is

a constant multiple of that of Gey,,, .4, the constapt, bemg DonralSanrer

A similar remark a,pphes to (10), (11}. These formulae are valid if
R(v) - 0 with v, so —1» < phase z < %7:

11.11. Approxmlate formulae for WMel@(z, q), Kel»®(z, g),
¥ek, (2, q), Gek,,(z,q). Using the do {a&nt term in the asymptotic
expansions of the Hankel functloyLS' ih'§ 13.40,1 if [v] 2> 2 we geb:

Mo e, 0) ~ et et (e, o)
13,42) S (2\ 2
Megh 3 (31‘2) "“"‘Pznﬂ( t?) et M (g, 1), (2)
Neilhk m 2\4 tifp—im  (h (3)
es }\“ Q) ™~ Saan| "€ {bgn41)s
(1. (2) 2\2 priw_im (4)
~N‘52n42 (2,q) ~ g0 — " € (g 42)-

Note thah 1) is a constant multiple of (4}, and (2) of {3).
Aphlymg the relationships in §13.41 to (1)—(4), formulae for
Eek, (2, q), Gek,,(z,q) are derived immediately. Asz > 4-oo the first
2\ fﬁnctlon tends to a constant multiple of the second, for any m.

NV 11.12. Formulae for ¢ < 0. Using the formulae in § 8.30 and
proceeding as in § 11.10, we obtain the following:

Cea(z, —q) ~ Dy, €/(2mo)t (), 1
Cegyi1(2s —q) ~ 83,41 €/2m0)F  (bypry)s O
Sezﬁ.l(z, —q) ~ Py €200 (@g,1q), (3)
Sezn-r-a(zs —q) ~ 3:;n+2 3”/@‘””)} (Ban e} (4)

T Or the formnlas in § 11.10, substituted into (1), (2} § 13.40.
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These funetions are constant multiples of one another, and each tends
to +20 monotonically as z - o0,

The formuiae for Fek, (z, —¢q), Fek,,, {z. —¢), Gek,y, (2. —q),
Gek,, 4z, —¢} are obtained from (1)—{4), respectively, on replacing
¢ by . Each function tends to zero monotonically as z » -+-20.

All formulae given hitherto in this chapter depend upon z heing
lerge enough for the Bessel functions in §§ 8.10-8.30 to be represented
{approximately} by the dominant terms in their asymptotic expan-
sions, We shall now remove this restriction on z, and establish what®™\

may be regarded as accurate axymptotic expansions. oS
£ N
11.20. Accurate asymptotic expansions in z. We corhénce
with the modificd Mathieu equation i EN
: y"—(a—2k2 cosh 22)y — 0. R4 (1)
Ifin {1) we write & = —ike? = —qv, it becomes [SHY
w\,/
d*y  ldy a kY ORT 2
— it - I IO IR N ¥ P4 ¢ =
de? 'z dx ( 'xzix‘*{i':‘ ®)
A second transformation is effected bv puttmg y = we~, and we
now et &N
= fj%?if_ 2__ - 1\ dw 1'+ k w =1 ’ (3)
dx® _':r dx N ' .

To solve (3) assume that w I\z (—1)7e,x—"-}, with ¢, = 1. Inserting

this in (3) and t‘Quatmg\aoefﬁc:ents of like powers of @ to zero, we
obtain the recur rence, relations

A\ X

Y 8¢, 4+ (4a—1) = 0, (4)

O 160, 4 (da—9jc, = 0, (5)

‘%‘(\r—' r51+[a_ (f_l_ 2]1” —I_;‘;l‘ﬂr -2 7 0 {'." = ) (b)

From (4)*(6) we find the expressions for the ¢ to be as follows [103]:

Q e TN C e vl s )
g 572

by = — Wa—1%)(da~~3da—5) 1,4 (%)
315° 31

oy (A= 10— a0 T | B gy 13y ()

478t 2.4!

and s0 on. Tt should be noted that, (1) the dominant term and the
0 which follow ape independent of &, (2) the first member of each
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¢ is identical with that in the asymptotic series for J (v} whena = 12,
i.e. the degenerate form of the ¢ when kb — 0. If & remains constant
nieanwhile, equation (2) reduces to the standard forin for the B.F.
J(v) and ¥, {v). Frequently the terms involving L in (8}, {8} are small
aumerically, compared with the earlier terms in the seriss, and may
be neglected, but this point should always be checked. The sclution
of (2}, with & = —iv, is

ailr }-rr)
Yy = we ¥ o= Z( Iye(—iv) T = Z efieiA. (10)
re=_ =0 N
w11y 2 AN
=t P (R "2—1—04@—“ ) —i{ey vheseg e 3]
) by . 11
FXCES o) [ Q] "'( N E] 2;
== -1 27>
vi AN\
where P =1—cyv-2}cyu-to\y (13)
and @ =c,vt—c, 'v—“i‘s\'@"ﬁ—-— (14)

The real and imaginary parts of (lz} are 1111@@11\* indenendent solu-
tionis of (1), so we have the twa soelutions

niz) = v L% GOR(r1- §)+ @ sin{v—-3m)] (15)

and Yol#) == v AP sin(o-}- o) — Q cos(e—+ L) . (16)
When z > -j-oc, we Q&y write

\\’ W (2) ~ v~ i!cos(v—{—;,;ar} ) {17)

and Yuf2) ~ vtsin(u ), (18)

these bcir;g'}fﬁé dominant terms in the asymptotic expansions (15},
(16) resﬁéctively

I'L}h Asymptotic expansions for Ce,, Se,, Fey,,, Gey,, 7>
IE18) §11.20 is multiplied by p,,(2/7), we obtain (2) §11.10, the

¢ :ﬁommanb term in the asymptotic formula for Ce,,(z,¢). Hence using

(16} § 11.20 we infer that _

Oy (2, @) ~ D3, (2/n0) [ P sin(v-+ o) — Q@ cos(e+ k)] (@ga)- (U
The subscript 2r and the supPrscrith (a) signify that ag, is to be used
for @ in the formulae for the ¢ in (7)-(9) §11.20.

If (17) §11.20 is multiplied by —p,,(2/m)t, we obtain (9) §11.1%,

the dominant term in the asymptotic formula for Fey,,(2. ). Hence
using (15) § 11.20 we infer that

Feya (2, 4) ~ —pan(2/mop[ PG cos(o-t dm)+ Qi sin(v+1m)]  (@an)- ()
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11.21]
Writing
k) = 2 PRt )~ @R e+ i) @) )
. 5 - ‘
SR = (= [PReose +dm) £ Qilsinotdm] (@) (9
and proceeding zs shown above, we arrive at the following:
Ceguni® @) ~ —Pona1 St (@2044), (5}
869,515 0) ~ =S40 88001 (baasa), (6)
Beg, 4202 @) ~ Spyez B se (Danss)> , \(‘Q
Foygualer @) ~ —Pansr By (@anp), X 8 |
Geyanr1(eq) ~ —Sapsn Binsr  {Bansa)s R N(9)
GOV ansa(e @) ~ —Sania Sinva  (Pguil; \‘ {10)

In the series for 2-®), 8@ ®) the ¢ in §11.20 are obialtied using the
characteristic numbers given at the r.h.s, ( NY

The asymptotic expansions for Mell»®(z, gJ;\Neg{J’@)(z, g) may be
written down immediately by aid of (1), 2)§13.40 and the appro-
priate formulae above. Then by mears\of §13.41 the asymptotic
expansions for Fek,(z,¢), ek, (z, ¢ thay be derived. The phase
range in the above formulae is “—é}f’é phase z < 3m.

11.22. Degeneration of expansions in § 11,21 to those for
Julky?), plkyr). By Apgé.fldix I when z— 4w, k=0, a—d4n’
then ker >k r and \, :
(8002, 0) > Din a1 ) (1)
As k>0, the seri.e;sin;?, Q@ degenerate to those in the asymptotic
expansion of &Q(}qr), excluding the factors

O

W (2freley 1) Sy 7 — o —m)

O
[g.ee ﬁfe?ence 202, p. 158]. In a similar way, under the above con-
d.ltlons; the asymptotic expansion of Fey,,(z,q) degencrates to Pan
times that, of ¥,,,(k, 7), and so on.

1.1-23- Accurate asymptotic expansions for ¢ < 0. These are
Gerived by applying the definitions at (1), (4),-.. §8.30 to the expan-
Slons for ¢ > 0 in §11.21. Thus from {1) §8.30 and (1) §11.21 we
obtain

C ,_ Np'n yw.,—r__'—t,‘oo___r-—r ) s 1
C5n(2, —g) (—Q;Evuj;[e r=0o,.1 ie rgﬂ( Lyre, v ] (t9n) | (_ )

Q.
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the ¢ being those in §11.20 with a = a,,,, ¢ = 1. Since
X
Cey, (2 —q) = 3 (— 1y AL cosh 2z,
r=0

it is a real function if z is real. The imaginary part of {1) must then
be omitted. This remark applies also to (3)-(5) below. The phase-
range for formulae in this section is —kn < phase z <2 I». Under
the conditions stated in §11.22

Cezn 2, '_Q) _}pén Zn(k ?) A (2:'
and the part in [ | in (1) degenerates to the series w hlch oceur in
the asymptotic formula for I, (k, 7). e\ \

O

\ W

For the other functions we obtain X
Gesm+1(za —g) ~ (S;""Jr;% [\‘-"1’ z ¢, v - fe~? E (*l)rc b_f] (Ban+a)s (3)

the ¢ being those in §11.20 with a = b% RY

Segnri(2, —¢) ~ é;?g)t [as at {‘ij\but 8= 8g11] (Gapu) (3)

“’

be2-‘3‘+3( —q) ~ (;&a&;[ a‘t (1) but ¢ —= 2-!;-{-2} {bay1a)- (3)

Each of the four functlons above tends to oo monotonically as
2= 4o0.

Fey,,(z, — ’?> pz“ a [as at (3) but & —= a,,] (@),  (6)
\

r

FeY%?t+1'(’?‘i""LQ) ‘-;2:14—)1&% [as at {l} but o = bﬂn ll] (b2n+1)’ (7)

E‘W‘e«a +1{z —q} ~ p;“j;‘ fas at (1) but & = ay,,,]  (@2011)s (8)

\
!'

,“\. b GeYauiglz, —q) ~ ;ﬂ*;;s[as at (3) buva = by, in}  (bansa) (9

\ Each of the four functions in (6)-(9) tends to +3o0 monotonically
as z — +o0,
Applying the relationship (10) §8.30 to the expansions (1), (6)
above, yields
lgek2n(z‘ ___g) P.!n z (—1)’(} o {Gg ) (10}

the ¢ being those in §11.30 with @ = a,,, ¢, = 1. The formulae
for Fekznﬂ(z, —q), Gekanﬂ(z, —g), Gekzﬂ,ﬂ(Z, —-gq) are obtained fror
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(10) on replacing Dan DY Sap41s Pinttr Sontes Tespectively, and using
the ¢ corresponding to the characteristic numbers by, . @, .1, by, 0.
These functions tend to zero monotorically as z -+ +o0.
When the conditions in § 11,22 are satisfied,
. )

wﬁ—lwe—vzl (— 1y, v - iKan(kl ), (11)
ie. 17 times the asymptotic expansion of the K-Bessel function,
The degenerate forms of the four asymptotic expansions above are,
then constant multiples of each other. Formulae for Me{?>®(z, —g})
Ne®®)(z, —g) may be derived from (10) and kindred formulae, byaﬂi
of the relamonsh] b in §13.41, O

11.30. Alternative asymptotic expansions in z, with argu-
ment 2k coshz. Previously the argument has been z&= kez, but it
may sometimes be expediont to use = 2% coshz, so'we shall develop
the appropriate asymptotic series. e\

The functions Ce,(z, q), Fey,(2,9), ¢ > 0., E@tx = —2tkoeoshz in
(1) §11.20 and we get ¢

(@ 412)y" 2y (2l — O, M
where p? = (a4-2%%). Writing y =1 208%% in (1) transforms it to
(x2+ 41‘2)10”—(2x2-—x—]158;f¢3}w’—(xupf Jw=0, {2)
with pf = (2k2—a). Asin §g}1\20 we now assume that
z (—1yd, x4, (3)
with dy = 1. \ s

Inserting (3) in’%;})' and equating coefficients of like powers of x te
Z8I0, we obt{mQ the relations [52)

‘ dy = F(pi+i) (4)

o) dy = H(pi+ D@+ D4 (5)

\2(?’+l}dm = [pi41(2r+ 1), — 4632 —1)d, 1+

k(2 —1)2r—3),, (r = 2). (6)

By Xpressing (4), (5) in a slightly different way, they are readily
‘otpared with (7) §11.20. Thus

PR i L BN ot R 2 %)
8 8
&y = BN ppoa i), )

4961 2. ! 82

)
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Writing - - T =1—dyutdyu-t—.., (9}

U=dul—dyusdtdus—.., (10)
by aid of §§11.10, 11.21 we obtain

Ce,,{z,q) ~p2n( ) [T sin(u~ o)~ Ul cos{a-+ im)|
{\a‘ﬂn)a (1])
Cegp a2, ) ~ Pznu( ) [T57 41 cos{ut{m)-+ ULy sin(ut-1n)]
(azn\ﬂ)’ (12)
Fey,,(z,q) ~ —.’Pzn( ) [as at (12) but with 2x fox 2@ Y
'\'\ (azn)! (13}
Yey,, (2. q9) ~ —pmﬂ( 2 ) [as at {11) but v.,lﬁh Qn—,—} for 2n]
"'x\\ aZrt—l) (14)
The phase range of {11)—(14) is — 7 <{phtise z < 1.

When k — 0, the parts (2/mu)i[ ','jﬁn (11)-(14) degenerate to the
asymptotic expansions for the Begsél functions J,, (), o, -, (1), Yau ()
Y3r41(u), respectively (see §11.92).

11.31. Formulae for q&ﬁb. To obtain these use definitions (1),
{11), ete. §8.30 in (11)}5(14) § 11.30. Then u = 2k coshz becomes
2k sinhz, and the reqiired expansions are found if in (1}, (3), (6),
(7) §11.23 we wnte@k sinhz for v and d, for c,.

11.32. The\(amctlons Sen(z, q), Gey,.(z,q), ¢ > 0. First we derive
the differqgltﬁal equation for y(z) = y(z)/sinhz by writing

\¢ y(z) = x{z)sinhz
in (1 §\11 20.
\R fransforms to

‘\

-—+200thz +(4k2coshzz—i—1—p2)x =0, M

where p? = a4 2k, The solutmn of (1) is, therefore, y/sinhz, where

y may be Se,(z,q). Gey,(z,q). Now write & = —2¢k coshz and (1)
becomes [ 52}

2
(= kz)w*l«i%x —(p a1y =0. @
If in (2) we substitute y = we—=, we obtain

(@*+dkw” — (223 — Bx - 8k%)w' — (3x—pi— Lyw = 0, @l
with p} = (2kt—a).
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To solve {3) assume that
w= Y (—1)ex~"L 4)
r~=0
Inserting (4) into (3} and equating coefficients of like powers of z to
zero, we obtain [5%]
e = Hpitd), (8)
e = I+ -382, (6}
Yrt-Teys = [P3+1)+ 3@+ 3)(2r—1)]e,~

— 42+ e,y H R (=)o, (P22 (D)

Then using the procedure in §11.20 with ¥ = 2k coshz, £\
Vo= l—eygu2+e ut—.. _ :"3’5 (8}
and W = e u-l—egu-3tesuP—.., \‘ (9)
we obtain the asymptotic expansions !
w\,/
2 LD
Sy, (2, q) ~ —85,41 ta.nhz(;@;)% X 2\

K[V, cosfut-m)+ WRegsittit 4] Ganan)s (10)
Seg,18(2,9) ~ S3n49 tanhz(;gl—‘)% X . :.;:’f‘

[V 2sha(u-i—ii@"—W’éﬁl_:.zcos(u+iﬂ)] (bgns)s (11}

Sn+
Ty ¢< ‘é
Geyy,nlz,q) ~ — 811 ta.nh\zfa)é X
Jfaeat (1) but 2n-1 for 2042] Gawaa) (12)

& 2
Geyy,1a(z, ) ",’\\’—:“'2-:»4-2 tanhz (‘JT_H)% X

A8V x[as at (10) but 2042 for 2n-t-1] (bgea)- (13}

The p.@§é '}ange of (10)~(13) is —37 << phase z < L.

When & — 0, the parts (2/m)¥ ] in (10)-(13) degenerate to
the asymptotic expansions for the Bessel functions Jon3(8)s Fonsaltehs
B (), Y, .4(w), respectively (see §11.22).

1133, Formulae for g < 0. Write 2k sinh zforv, & for ¢, in (4),
(8), (8), (9) §11.23 and multiply by cothz. The expansions 0
obtained are identical with those found by epplying the definitions
(21}, (31), (24), (34) § 8.30, respectively, to (10)-(13) §11.32.

N\
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11.34. Formulae for Fek,(z, —q), Gek,(z, —g). These may he
obtained from the asymptotic expansions for Ce,, (2, —q), Fey, (z, —q),
8e,,(2, —q). Gey,,(z, —¢) and application of formulae (10), (20), (30),
(40) § 8.30.

11.40. Asymptotic formulae for ce,(z, ), se,,(z,¢) When ¢ is
large and positive [52]. From (12) § 12.21 we see that when ¢ is
very large and positive, @ ~ — 2¢4 O(g?), so we shall assume that

@ = —2topitagtog g it apgtagg it A, (D)
where a, oy, ... are constants dependent upon the ftmc-dzmn and its
order. Putting this series for ¢ in the standard Mathi‘eu squation

for ce,, se,, gives O
Y~ (4g cos™)y -+ (oqt + vyt g+ apa A Y=o @®
To solve this equation we assume that [73; }0‘11
y = AR 14+g (o) HasHal) + ) (3)

Substituting (3) into (2) and equa,tlng\cuﬁﬂicwnts of ¢, g, ¢°% ¢4, ¢!

to zero yields the equations
[x']? = 4cos?, 4)

W

WOV K =0, (5)
W Ut =0, (6)
f1E”"f:?é:g’—}‘(f1”+2x’f2’+%f1+“1)§ =0 (M
fal’+ 2f'§<‘£7{fe'+2xﬁ+%fa+0‘1 Jito)l = 0. (8)
Solving (4), (5 \we obtain
A\ x == -4 3ginz+a eonstant } (@)
and '\ { = a constant/(cos z)Htan(§z+ 17)}eo,
Inser\\bmg (9) into (3) leads to the first approximations:
D 3 = e%en3(cos 2 {tan(je -+ ol 10)
\3 ahd Ys = eHsmaftan (Lz1- Ir)}o/(cos 2)5, (11}

These are formal approximate solutions of y"-F(z— 2¢ cos 2z)y = 0,
when ¢ is large and positive.
A first approximation to (1) is
a+2g ~ agi,
and from §12.30  a4-2g ~ 2(2p+1)gt, {13)
where p = 0 for ce,, se; p = m for ce,, se,, +1» Thus we take
a = 22p+1). (14)

(12)
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If in addition we use the formulae

[tan{dz+1m)]? = 2Fcos(fz-{n)/cosiz, (15)
[tan(iz+3im)}f = 2Fsin(lz+dn)/eostz, (16)

(10}, (11) may be expressed in the form
Yy == 2Pk sd ong(da.l La) |2+l (cog 2P +1 {17)
and yy = 20+he-Thsinelgin(lat 17|21/ (cos )P+, {18)

Writing —2 for 2 in (18} gives (17), and vice versa. .
O\
11.41. Gonstruction of asymptetic formulae for ce,,, .sa,,:,"g
large and positive [52]. First we remark that (17} §'1,I:,‘4“0 has
poles at z = ...—im, —im, 27, Im...., and in general at z =(4r4-3)4m,
r—=—mto +oo. Also (18)§ 11,40 has poles at z = 1r@e 1), Since
oe,,, se, are bounded functions, the variable z musb be restrieted to
exclude the singularities of {(17), (18) §11.40. ,:j\\' :
Secondly, using the two latter formulae, the solutions of Mathieu’s
equation may be expressed by y = eyliﬁyz; where ¢, 6 are appro-
priate constants: for ce,, se,, p = 0, sd bearing in mind the inter-
changeability of (17), (18) §11.40, we'choose ¢ = § = (275 Thus
we ohtain i
O, [e2sina CDS(%Hj %&e—zkmz sin(lz-1m)]/cosz, (1)
these being valid in —\J_;}.-N< 2 < Lr and r <2 <i7, thereby
avoiding the Sillglﬂﬂil‘ifgire's mentioned above. We have now to dis-
criminate between(these solutions to ascertain which represents ceg
and which Sel,\’;With the u]][]é‘p}."lower Sigﬂ (l) is even;’odd in
—im <z < vgzx, and with the lowerfupper sign it is evenfodd in
<z <~3—1} Hence we have deduced that when g => 0 Is large
enough{™y "
) 3
e ot imfoosz, (@)

Seu (z, q) ~ C;[eszinchS(%z+~i1T)—|—£"2"‘511“73111(
1

. . - . 3
the open interval —3n < 2 < i pertaining 10 &g and 7 <z < 37

2
tose,, Also

e, e
sef {2,4) ~ Ou[eaksinzCOS(_%Z+3;,,)_8—2?¢BM sin{z+4- }—:r)];’cos z, (3)

the open interval In < 2 < 3 for ceyand —37 <z < $o for se,.
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An argument similar to that above enables the following to be
derived:

P @) in —fr <z < %w]
881 .
T
Mt’m {e”‘smz[cos[%z-{-;}w)]zmi'1j~_—c"z""’mz[sin(%z—}—iw)]z”"i'l};'cosm"'lz.
mtl
(4)
Tor the interval §m <z <C &, alter the centre signs to F. The
constants U, S are determined in §11.42. Q)

q large and negative, The formulae for this case may, be derived
from (2)-(4) by applying the relationships in §2.18 a,nd\ aitemng the
range of z accordingly.

11.42. Formulae for Ce,(z, ¢), Se,(z, q), ¢,Jarge and positive.
If the method given in §§11.40, 11.41 is apfi]}éd to (1} §2.30, use
being made of the fact that Ce is evensand Se odd, the results
obtained are those in § 11.41 with 22 wriften for z. Thus

Ce, (2, q) ~ 2}C, [e?ék#inbiz(cogh 1 1z——‘aslnh Lz)tmt p.

—i—e‘ﬂ’v"ﬂmhz(eosh.zz{-@ sinh L2)2m41]/(2 vosh 2y (1)
Putting @ = cosh }z, b = smhlz 6 = tan—*(b/a), (1} becomes

) e f
Cem(z, q) ~ [EL—,,_ {81[2»': sinhz—(2m+1)0] 4 g-il2k slnhz- (241} }
{cosh z{“ 1

Z’N"J*%T cos| 2k sinh z— (2m—-1)tan—*(tanh iz)].  (3)

In the same u\ra.y we find that
Be, .1 z\q} e % sm[2k sinh z—(2m+1)tan—t(tanh 12}]. (4

Thpxp'\a.se range of (3), (4) is —17 < phase z < {». For z imaginary.
fotraulae in §§ 11.41, 11.43 may be used.

_Y“When z > 40, coshz > v/2k, 2ksinhz - v, tanh}z 1, so that
(3) degenerates to

Ce,(z,9) ~ Cm(;f:)&( ) cos{y— m—Lmm). (3)
Thus with m = 2n, 2n+1 we got
Cey,l2, g) ~ O {—1)" (;f é( ) sin{v+ i), (6)

Cean sl @) ~ Cypaa (1) 31 e (2) cos(v+37)- (7)

22+t |y
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From (4) we have

ko)t .
Senisl0) ~ Suoa o ) sinle—fr—mr), ®)
A
30 Seﬁn-i—l(zs g) ~ S2n+1(_ 1)n+1 (2_35% (%)%cos{v_!_i“} (9)
nd Sepnsleng) ~ Sy =1 S (Dfsine ). (10

The expressions for the € and § may now be written down one
comparison with (2}, (4), (5), (7) § 11.10, since as z > J-oo the corres
sponding formulae tend to equality. Thus we get [52] <\
'\

Chp = (—1)"227~4 ey, (0) 0y, (Jor)/ AT (k)1 Q7 (1)
Oz = (—1)H12804 ey, o (0)ceg, () BAET VG, (12)
S = (= 12803 sl O Bk BRIGRY,  (19)
Sop s = (—1)n+122n+} seén+2(0)Seén+2(il:“}./"l"\?‘g(amlm(”k)l‘ (14)

q large and negative. The formulae for<ghis case may be derived
by applying (1), (11); (21), (31) §8.30 to{(3]; (4) above, and taking
the real part, when z is real. 3"3'

11.43. Higher approximatiofs [52]. (6) § 11.40 may be ex-
pressed in the form o

5 = T e 2K )

Substituting from (9) § 1140 into (1) and taking m, = (2m-+1) gives
hHiz) = :F(ﬁ}[{[\(’fi@f%&smz:Feiml]jcoszz}—[—

e (g4 1+ 8o log, tan(Ge+1m)]. ()

The additive.éohstant of integration has been omitted, since it does

not aﬂ?ecg t‘h} ultimate result. Then the second approximations are

e, N, .

L NEDIn —fr <2 < %w’

%Jri

o~ m{yl(l+--2f1‘i‘_i):f:?}z(l"f‘sfxq_*)]/?’m”- (3)

For the interval 17 << z < §m, alter the centre signs in {3) to .
Y1 Yy are, respectively, (17), (18) § 11.40, while _ef1» ofy Tepresent fi
n (2) with two negative or two positive signs. Since ce,, 8, are
Periodie, (3) must not alter, save in sign, when —z is written for z.
Hence the logarithmie term must vanish, so

g = —(mi1)/8 = —(2m+2m+1}f4 (4
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Thus the second approximations for ¢ large and positive are

ce .
"o (zg)in —ir < 2z < %ﬂ-}
8€41
G ;
~ . {SZkEmz[GOS(%Z—i—i?T)]E’n“i"lX
Fns1

X[14+-{2m+ 1) — (mP-f-m 4 1)éin 2}/ 8k cos®z]4
:te—zk “lnz[sin(%z—l— %w)]SnHl b

X [H-{(2m+ 1)+ (m2+-m-+ 1)sin 2}/8L cosz }};’cos’“"{z. (5)
For the interval = << 2 < %n, alter the centre signs to &, Remem-
bering that the Iog term in (2) is zero, we see that f,(z) hassmgularities
at 2 = }m(2r-}-1), r any integer, and these are comrp:c\)'n to {(5). Thus
the formula is invalid in the neighbourhood of/ahy ‘of these points,
80 (5) must be restricted to the condition thap-beos2 is large enough.

11.44. Asymptotic expansion for o.[52, 92, 93]. Ifin §11.43
the analysis is extended up to f, ar}g{&t\each stage the logarithmic
term is made to vanish by equatiglits coefficient to zero, the values
of the o in (1) §11.40 are obtajned’in terms of m, and g. Then we
get tho following asymptotic,gxpansion:

@ ~ —2q+2my gb-- ()20 — (m+ Bmy g 42—

~ (5mi+ 34m3 £ )y 1212 (33mI - 410m3+- 405m, )g 3217~
— (63mi+ 12600+ 29433 |- 486)g 2220

— (52mT+15617m$ -+ 69001m3 -+ 41607m,)g 1225 —..., (1)

with ':\’T(Qp—l—l}. p =10 gives Gy, by; p'==1 gives ays b?; and in

general-pie= m gives a,, b, Sinece all the characteristic curves

&g lying between a,,, b,,,, ave mutually asymptotic when g is large

egough, (1) gives a,,,5 for p = m. This will be clear from Figs. 8,

~(I1. In references [92, 93] formula (1} is derived by a procedure

\/ different from that outlined above. Both methods involve some
very heavy algebra.

When ¢ — +c0, (1) may be written

‘ @~ —2¢+2(2p+-1)gh, @
so the form in §12.30 is reproduced.

¥or p moderate, (1) gives accurate results for comparatively small
values of g. For an assigned ¢, the accuracy decreases with incr.e.«'t-“’f?
in p. Thus to maintain accuracy to a definite number of decimal
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places {or units in the sth significant figure, whichever is preferred)
¢ must increase with increase in p. We may say that (1) gives
adequate accuracy, provided p?/¢ is not too large. To illustrate the
order of aceuracy attained for various g, Table 20 is appended. When
¢ > 40, formula {1} with p = 0, 1 gives & correct to the fifth-decimal
place at least. The acourate values wore obtained from reference [52],
Additional information regarding the accuracy of (1) is given on
p. 299 referenco {93},

Tasre 20. Duta illustrating accuracy of formule (1)

. A
Vatues of | —etg, —8; ' o _A"’cumw values ey, —by 4ccum&e m'z@;es\“. )
7 Sfrom {1} ! —@y —b if?'ﬂmll) —a . b,

3 i 10-60804 | 1060672 | 10-60536 i 0-41144 | 0435964 0-38938
16 | 24.25868 | 24.25868 | 2425864 | 9-33456 | 0-35268) 9-33412
40 | 67-64216 | 67-64216 | 67-64216 ' 4335228 53 35)93 43-35228

In reference [56] asymptotic formulae are ecdnced for the dif-
ference between two characteristic numbers m\a stable region of the
(2,9) plane. There are also asymptotic fopmulae for @ when the
ourves e, b,, are approached from an unstable region.
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XII

ZEROS OF THE MATHIEU AND MODIFIED MATHIEU
FUNCTIONS OF INTEGRAL ORDER

12.10. Real zeros of ce (2, ¢}, se,(z,q9), Ifgisfixed andm = 1, these
funetions vanish for certain real values of z. Consider the cage g = 0
when the functions reduce to cosmz, sinmz, respectively. In the
interval 0 <C 2 < =, the graphs of cosmz, sinmz cross the z-axis m
times, so each function has m real zeros in this intervals The case
m = 3 is fllustrated for cos3z in Fig. 184, there being)three zeros
in 0 < z << #. We shall now demonstrate that the glgymber of zeros
of cey(z,¢} in g > 0 remaius constant [87]. ("}’a >
Let ¢ be increased from zero, and suppos@)that a fourth zero
appeared, Its genesis would entail the cuﬁ(é of Fig. 18 4 bending
towards the z-axis as shown by the brokeh line. From the theory
of equations, the existence of a minimim value above the z-8XI8
would entail the oceurrence of twd’}oﬁjugate complex zeros of the
type 2, = a+if, z, = x—if. Further increase in g would be accom-
panied by the minimum appreashing and ultimately being tangential
to the z-axis, thereby impedducing a double zero, ie. z = bis
(Fig. 18B). For a greater ¢ the minimum would occur below the
axis, thereby entailify two different simple real zeros (Fig. 18 c).
If 2 = o wer afdéub]e zero, we could write

Ooes(z ) = (z2—a)?f(2) = y(z), say. (N
Then ) \ ; ¥'(2) = 2(z—x)f(2)+ (z—a)¥f '(2), (2)
o A0 Y{w) = 0. (3)

Ng&}y”—{— (@—2gcos )y = 0, and y(a) = 0, by hypothesis, 0
L Yile) = 0. Hence y(a) = y'(x) = y"(x) = 0, s0 y(z) must be a null
~Aunction, i.e. y(z) = 0. But ce,(, g) is not & null function, so & double
zero cannot oceur. A similar argument may be used to show that
the number of zeros cannot decrease. It follows that the number of
zeros of cey(z,q) in 0 < z < = is independent of ¢ in g >0 In
general a discussion on the above basis leads to the conclusion that
¢e,,, se, have m simple zeros in 0 < z < 7. se,, has a simple zeT¢
at the origin, so it has (m—1) zeros in 0 < z < 7. When g = 0 the
zeros are equally spaced, i.e. for the circular functions, but, as show?
later, they tend to cluster about » — L as ¢ - 4-00, excepting that
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of se,, at the origin. This discussion shows that as the number of
zeros in a given interval is independent of ¢, the graphs of ce,,, se,,
are distorted versions of those of cos mz, sinmz (see Figs. 1-4).
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